

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IPSEC-BASED DYNAMIC SECURITY SERVICES FOR
THE MYSEA ENVIRONMENT

by

John F. Horn

June 2005

 Thesis Advisor: Cynthia E. Irvine
 Co-Advisor: Thuy D. Nguyen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: IPsec-Based Dynamic Security Services for the
MYSEA Environment

6. AUTHOR(S) John F. Horn

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
It is recognized that security services in information-processing systems require access to finite resources in the

execution of their duties. In response to the changing threats faced by a system and/or the availability of system resources, it is
desired that the system be able to adjust its operational security policies automatically while continuing to function under an
acceptable global security policy.

This work involves the analysis and integration of a dynamic security service (DSS)-enabled IPsec implementation
into a form ready for installation into the MYSEA environment. The feasibility of dynamic security services is demonstrated
with support for secrecy and/or integrity protection of MLS server-to-end-user communication via a Trusted Path Extension.
This is accomplished through the modulation of the IPsec security associations to adapt to operational needs.

The result of this research is beneficial to Homeland Security, the Department of Defense, and the intelligence
community by enabling remote distributed computing clients to operate in a secure manner that remains flexible to adapt to
changing requirements of protection on the network and the availability of resources on terminating hosts. Furthermore, these
methods can aid the realization of high-assurance edge-client connectivity in the creation and extension of the Global
Information Grid (GIG).

15. NUMBER OF
PAGES

132

14. SUBJECT TERMS Information Assurance, Multilevel Security, Dynamic Security, Monterey
Security Architecture, IPsec, KeyNote

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IPSEC-BASED DYNAMIC SECURITY SERVICES FOR THE MYSEA
ENVIRONMENT

John F. Horn

Civilian, Naval Postgraduate School
B.S., University of Akron, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2005

Author: John F. Horn

Approved by: Cynthia E. Irvine, Ph.D.

Thesis Advisor

Thuy D. Nguyen
Co-Advisor

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

It is recognized that security services in information-processing systems require

access to finite resources in the execution of their duties. In response to the changing

threats faced by a system and/or the availability of system resources, it is desired that the

system be able to adjust its operational security policies automatically while continuing to

function under an acceptable global security policy.

This work involves the analysis and integration of a dynamic security service

(DSS)-enabled IPsec implementation into a form ready for installation into the MYSEA

environment. The feasibility of dynamic security services is demonstrated with support

for secrecy and/or integrity protection of MLS server-to-end-user communication via a

Trusted Path Extension. This is accomplished through the modulation of the IPsec

security associations to adapt to operational needs.

The result of this research is beneficial to Homeland Security, the Department of

Defense, and the intelligence community by enabling remote distributed computing

clients to operate in a secure manner that remains flexible to adapt to changing

requirements of protection on the network and the availability of resources on terminating

hosts. Furthermore, these methods can aid the realization of high-assurance edge-client

connectivity in the creation and extension of the Global Information Grid (GIG).

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. PURPOSE...1
C. ORGANIZATION OF PAPER ..2

II. BACKGROUND ..3
A. MYSEA ENVIRONMENT OVERVIEW ...3
B. IPSEC OVERVIEW ..6
C. DYNAMIC SECURITY SERVICE/QUALITY OF SECURITY

SERVICE..8
D. INTEGRATING DSS INTO MYSEA..10

III. REQUIREMENTS, DESIGN, AND IMPLEMENTATION13
A. REQUIREMENTS...13

1. Protected Communication Channels..13
a. Protected Channel Protocol..13
b. HTTP ...13

2. Dynamic Security Service..14
B. DESIGN ..14

1. Implementation Stage 1...14
2. Implementation Stage 2...16
3. Implementation Stage 3...17
4. Implementation Stage 4...17

C. IMPLEMENTATION DETAILS AND CHALLENGES18
1. Physical Network Topology ..18
2. Stages 1 and 2 ...19
3. Stages 3 and 4 ...20

IV. UNIT TESTING...23
A. TEST PLAN ...23

1. Protection of Data Crossing the MLS LAN.....................................23
2. Dynamic Policy Tear-Down ..25
3. Correct NAT Functionality...26

B. TEST REPORT..26
1. Stage 3 Testing..26

a. MLS LAN Data Protection Test ...26
b. Selective Dynamic Policy Tear-Down Test28
c. NAT Functionality Test ..28

2. Stage 4 Testing..29
a. MLS LAN Data Protection Test ...29
b. Selective Dynamic Policy Tear-Down Test31
c. NAT Functionality Test ..31

V. FUTURE WORK AND CONCLUSIONS...33
A. FUTURE WORK...33

 viii

1. Multi-user/Multi-TPE Integration and Testing33
2. MLS Server Control Over Dynamic Security Policy......................33
3. Integration of the DSS Gateways into the MLS Server and

TPE..33
4. Mechanism for MLS Server to Update TPE34

B. CONCLUSIONS ..34

APPENDIX A: STAGE 3 SYSTEM INSTALLATION AND
DEMONSTRATION ...35

APPENDIX B: STAGE 4 SYSTEM INSTALLATION AND
DEMONSTRATION ...51

APPENDIX C: CONFIGURATION FILES ..67
A. STAGE 3 ...67

1. Server-Side DSS Gateway ...67
a. /root/vpn28_ah_a ..67
b. /etc/isakmpd/isakmpd.conf..69
c. /etc/isakmpd/isakmpd.policy ...70

2. Client-Side DSS Gateway..75
a. /root/initialize_flows..75
b. /etc/isakmpd/isakmpd.conf..77
c. /etc/isakmpd/isakmpd.policy ...78
d. /etc/nat.conf ...79

B. STAGE 4 ...79
1. Server-Side DSS Gateway ...79

a. /root/vpn28_ah_a ..79
b. /etc/isakmpd/isakmpd.conf..80
c. /etc/isakmpd/isakmpd.policy ...81

2. Client-Side DSS Gateway..86
a. /root/initialize_flows..86
b. /etc/isakmpd/isakmpd.conf..88
c. /etc/isakmpd/isakmpd.policy ...94

3. TPE..95
a. /root/net_config ...95
b. /root/masq..96

APPENDIX D: TEST PROCEDURES...99
A. TEST FLOWCHART..99
B. TEST PROCEDURE...100

LIST OF REFERENCES..107

INITIAL DISTRIBUTION LIST ...111

 ix

LIST OF FIGURES

Figure 1. MYSEA Environment Topology ...4
Figure 2. Stage 1 Design Topology...14
Figure 3. Stage 1 Logical Component Topology ..15
Figure 4. Stage 2 Design Topology...16
Figure 5. Stage 2, 3, & 4 Logical Component Topology ..16
Figure 6. Stage 3 Design Topology...17
Figure 7. Stage 4 Design Topology...17
Figure 8. Physical Developmental Network Topology for Stage 418
Figure 9. Stage 3 Logical Network Topology...36
Figure 10. Stage 4 Logical Network Topology...52
Figure 11. Test Procedure Flowchart, Part 1...99
Figure 12. Test Procedure Flowchart, Part 2...100

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Sample Dynamic Security Services Policy Database for IPsec.........................9
Table 2. MLS LAN Data Protection Test ..24
Table 3. Selective Dynamic Policy Tear-Down Test...25
Table 4. NAT Functionality Test ...26
Table 5. Stage 3 MLS LAN Data Protection Test Results...27
Table 6. Stage 3 Selective Dynamic Policy Tear-Down Test Results28
Table 7. Stage 3 NAT Functionality Test Results ...29
Table 8. Stage 4 MLS LAN Data Protection Test Results...30
Table 9. Stage 4 Selective Dynamic Policy Tear-Down Test Results31
Table 10. Stage 4 NAT Functionality Test Results ...32

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACRONYMNS AND ABBREVIATIONS

CC Common Criteria

COTS Commercial Off-The-Shelf

DAC Discretionary Access Control

DSS Dynamic Security Service

EAL Evaluation Assurance Level

HTTP HyperText Transfer Protocol

IKE Internet Key Exchange

ISAKMP Internet Security Association and Key Management Protocol

IP Internet Protocol

LAN Local Area Network

MAC Mandatory Access Controls

MLS Multilevel Secure

MYSEA Monterey Security Architecture

NAT Network Address Translation

QoS Quality of Service

QoSS Quality of Security Service

SIPRNET Secret Internet Protocol Router Network

STOP Secure Trusted Operating Program

TCM Trusted Channel Module

TCP Transmission Control Protocol

TPE Trusted Path Extension

UDP User Datagram Protocol

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I thank my thesis advisors Thuy Nguyen and Cynthia Irvine for dedicating time,

patience, resources, and expertise to support of this project. I give special thanks to my

wife who has graciously supported my graduate studies at the Naval Postgraduate School.

This material is based upon work supported by the National Science Foundation

under Grant No. DUE-0114018. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MOTIVATION
Designers and maintainers of computing systems responsible for storing and

processing critical and/or sensitive information are faced with the challenges of

controlling access to and modification of data contained within the computing system as

well as data in transit between systems. Threats to the security of the system often

change as capabilities of adversaries improve and operating environments evolve.

Protection mechanisms, such as the deployment of IPsec for securing network

communications, must often be reconfigured in response to these changing threats.

Likewise, it is recognized that security services in any information-processing

system require access to finite resources in the execution of their duties. Since a shortage

of resources such as CPU, memory, and/or time has the potential to adversely affect the

execution of critical processes in the system, management of available resources can be

critical. The dynamic nature of both resource availability and the threat level faced by an

information-processing system has resulted in the need for the operational security

policies to be configured with multiple security profiles that can be selected based on the

state of the current operating environment. The security mechanisms responsible for

adapting the system’s operational needs to the changing security policies is referred to as

Dynamic Security Services.

The motivation for this study is to improve the protection of sensitive

communications in the MYSEA multilevel secure environment while providing for

dynamic modulation of security resources in a manner consistent with the system

operating policy.

B. PURPOSE
The goal of this project is to produce a dynamic security service-enabled IPsec

subsystem for the MYSEA environment. The implementation must incorporate

adaptable secrecy and integrity protection for both sensitive authentication and integrity-

critical information delivery tasks in the MYSEA environment. The implementation will

both provide a functional interface to specify the current operating policy of the system

2

and support the enforcement of the policy. The system will then be tested to ensure

correct functionality of the implementation.

C. ORGANIZATION OF PAPER
A brief introduction to the paper is presented in Chapter I. Chapter II lays down

sufficient background describing both the purpose of this thesis and how it fits with key

characteristics of the MYSEA project. Coverage includes IPsec, Dynamic Security

Services (DSS), and the role of DSS in TPE-MYSEA server communication. Chapter III

lays out the requirements of a dynamic security service-enabled IPsec implementation in

the MYSEA environment. These requirements are then used to form a four-stage plan

designed to reduce complexity in the implementation of the system. A discussion of

implementation difficulties is also included. Chapter IV provides testing coverage which

is used to verify correct functionality of the system, and Chapter V reviews the product of

this effort and details follow-on work.

Four appendices are also included. Appendix A and B detail the steps required

for installation, configuration, and a demonstration of the system. Appendix C contains

the configuration files used in the Stage 3 & 4 implementation with explanations.

Appendix D contains the test procedures that correspond to the testing described in

Chapter IV.

3

II. BACKGROUND

This chapter provides background material relating to this project. The first

section is an overview of the MYSEA project, the second section contains a brief review

of IPsec, and the third introduces the concept of dynamic security services. Finally, there

is a discussion on the integration of dynamic security services into the MYSEA

environment.

A. MYSEA ENVIRONMENT OVERVIEW
The Monterey Security Architecture has been designed to serve as a complete, yet

flexible, trusted and distributed multilevel secure (MLS) environment [IRV04]. While

MLS systems have existed within the DoD and commercial marketplace for many years,

the combination of the high cost of acquiring, configuring, and maintaining such

componentry, and the difficulty of (re)training end-users in the use of current and

historical MLS systems have lead to sluggish adoption of such systems. As an

alternative, in environments ranging from corporate R&D to national intelligence and

law-enforcement, current practice in many agencies that have strong requirements for

information secrecy and integrity is to use low trust systems for all assets with physical

separation between “high-value” systems and systems operating at lower secrecy and

integrity levels. This is referred to as a “system high” mode of operation. While in the

past, such isolated, single-level computers and networks generally proved sufficient for

completion of mission, in the age of the Global Information Grid (GIG) [LEO00], a new

solution which provides for controlled information sharing across enterprises is required.

MYSEA’s design addresses user acceptability by utilizing commercial-off-the-

shelf (COTS) components to handle tasks such as user-interface, desktop applications,

and network switching and routing while using high-assurance components where needed

for total, system assurance. An architectural network view of the MYSEA environment

is depicted in Figure 1. Client access is handled via diskless, Intel-based personal

computers running operating systems such as Linux or Windows variants. By using a

common enterprise operating environment on the desktop, cost and availability issues

associated with the purchase and construction of end-user applications suitable for

execution in a traditional MLS environment are greatly reduced.

4

Figure 1. MYSEA Environment Topology

The storage and exchange of information between the unevaluated, untrusted or

“less-trusted” components is directed and supervised by a high-assurance, network-

connected MLS server, currently the DigitalNet XTS-400 running the high-assurance,

general-purpose Secure Trusted Operating System (STOP). The STOP enforces

mandatory access control (MAC) as well as traditional Unix-like discretionary access

control (DAC). The MAC capabilities of the STOP include an implementation of the

Bell-LaPadula policy [BEL76] for secrecy and the Biba policy [BIB77] for integrity

enforcement. Both models have been mathematically proven to be complete and secure,

and DigitalNet’s implementation has completed evaluation at Common Criteria [CC04]

EAL 4(+) [NIA04]. Additionally, the XTS-400/STOP combination is currently

undergoing further evaluation at EAL 5+ [CYG04]. From this point forward, this

component of MYSEA will be referred to as the “MYSEA server” or simply the “MLS

server”.

5

Network communication between the MYSEA server and each remote thin client

is enabled via an inline Trusted Path Extension (TPE), typically co-located with the

client. The TPE creates an encrypted, unforgable communication and control channel

(trusted path) between the thin client and the MLS server. In this LAN, protected client-

MLS server communication, including authentication and session level negotiation are

afforded by the TPE. Unevaluated, and thus potentially malicious, networking equipment

may be juxtaposed between the TPE and the MLS server. Other communication on the

same LAN between the MLS server and other TPEs can simultaneously take place at a

wide variety of session levels without compromising the integrity or confidentiality of the

protected channels maintained by a given TPE. The TPE is targeted to run as a

specialized hardware appliance executing a custom high-assurance (EAL 7) security

kernel currently in development at the Naval Postgraduate School. Currently, a TPE

prototype hosted on a Pocket PC running Linux has been implemented.

Finally, it has been recognized that a requirement for communication between the

MYSEA server and single-level networks exists. Such networks may be “legacy”

networks that connect to the kinds of single-level systems referred to above.

Alternatively, these may be ad-hoc or “coalition” networks designed for streamlined

information sharing with allies and strategic partners. Currently, direct connectivity to

such networks in the MYSEA environment is permitted by assigning an appropriate

STOP security label to a specific network interface connected to the single-level network.

Subsequent communication on that network interface is then treated as communication

with a user or process operating at the secrecy and integrity level assigned to the

interface. The MYSEA architects envision adapting and expanding the use of the TPE

hardware and kernel to a Trusted Channel Module (TCM) that is able to securely bridge

or multiplex multiple single-level network connections to a lesser number of MLS server

network ports. Additional information on the design and requirements of the TCM and

its associated communication protocol can be found in Sears [SEA04].

Again, it is emphasized that the primary specialized componentry in the MYSEA

environment besides the MLS server itself is the TPE which allows extension of a trusted

path to a distant, untrusted thin client and the related TCM which is capable of

multiplexing multiple, single-level network connections onto a single interface. By

6

minimizing requirements for highly specialized hardware and software while adhering to

sound security architecture, MYSEA aims to demonstrate the feasibility of general-

purpose MLS environments.

B. IPSEC OVERVIEW
IPsec is a standardized IP version 4 and version 6 protocol suite specified in

RFC2401 [KEN98]. Its goal is to provide integrity, authentication, confidentiality, and

replay protection for protocols operating at or above layer 3 in the ISO/OSI network

model. By operating as a layer 3 protocol, TCP and UDP packets can be protected by the

IPsec protocol. Additionally, by operating at layer 3, IPsec typically appears to be

invisible to network-enabled application programs. Stated simply, IPsec works by

encapsulating higher-level protocol packets within an IPsec packet much like TCP and

UDP packets are encapsulated within IP packets.

As part of the suite, IPsec has two core protocols: authentication header (AH) and

encapsulating security payload (ESP). The AH protocol provides authentication

checking for entire IPsec packets while ESP provides for encryption of IPsec packets.

ESP encapsulated packets are first encrypted and then enclosed within an IPsec packet

with new IP header information. AH encapsulated packets are first enclosed within an

IPsec packet with a new IP header and then a hash is computed over the entire

encapsulated packet. It is interesting to note that neither protocol provides complete

secrecy and integrity, as the AH protocol performs no encryption at all while packets

containing ESP-encoded information are vulnerable to manipulation of their outer, IP-

level headers. If both secrecy and integrity are functional concerns, IPsec is able to first

encapsulate an IP packet using ESP for secrecy followed by an encapsulation of the ESP-

encoded packet using AH. In some implementations this is not trivial, but by doing both,

secrecy and integrity can be assured at the point of packet decryption.

IPsec’s secrecy and integrity functionality is not tied to any single algorithm or set

of algorithms for encryption and hashing. Instead, IPsec protection can be extended by

adding additional hashing and encryption modules to an existing installation. Common

hashing algorithms used in conjunction with IPsec include SHA1 and MD5, and common

encryption algorithms are DES, 3DES, and AES. Since different hosts may have

7

multiple suites of algorithms that may be used to establish IPsec-protected

communications, a method for dynamically negotiating the algorithms to be used in an

IPsec flow is required.

Internet Key Exchange [HAR98] (IKE) was designed to be a protocol standard for

negotiating and maintaining IPsec communications between hosts. It builds on the key

exchange capabilities of the Oakley [ORM98] standard and the authentication and key

exchange framework outlined in the Internet Security And Key Management Protocol

[MAU98] (ISAKMP). When attempting to set up a secure session or “tunnel” between

two systems or networks, IKE enables involved hosts to negotiate what services will be

used, based on what protocols and algorithms each end host supports. These

requirements may include a preferred or required hashing algorithm (e.g. SHA1, MD5)

and/or a preferred or required encryption algorithm (e.g. DES, 3DES, AES). For

example, if one host is only capable of using AES for encryption, while its peer offers a

variety of secrecy algorithms, the IKE daemons on each host will attempt to negotiate a

suite of protection algorithms common to both hosts that operates within the bounds of

the policies of the system.. Upon successful negotiation of such algorithms, a security

association (SA) is established for a given set of requirements. Any future

communications that have the same requirements may also pass data under the same

security association. Under the OpenBSD [OPE05] operating system, IKE functionality

is provided by the isakmpd subsystem.

IPsec with IKE can provide some protection in a network environment, but by

itself, it does not provide a mechanism for the specification of policies that might require

conversations with a given host to use certain protocols while conversations with all other

hosts must use a different set of protocols. Support for decision making and clear

specification of policy can be found in a product called “KeyNote” [BLA99]. An IPsec-

enabled implementation of KeyNote is included with OpenBSD versions 2.6 and greater

[BLA01], and enables a system security administrator to specify policy rules that must be

matched before a security association is permitted to take place between hosts.

At present, an IPsec implementation is not integrated with the IP stack for STOP.

Until such an implementation is available, in order for the MYSEA server to leverage

8

IPsec-protected communications, implementation and testing must proceed with the

insertion of an external, IPsec-capable device between the MLS server and the remote

IPsec host or gateway. In the IPsec community, this is referred to as a “Bump In The

Wire” (BITW) implementation.

C. DYNAMIC SECURITY SERVICE/QUALITY OF SECURITY SERVICE
“Quality of Service” (QoS) in distributed computing and network environments

typically describes attempts to quantify and maximize some weighted combination of

factors such as efficiency, predictability, accuracy, and reliability across a set of given

nodes, processes or entities as each entity attempts to complete some task. Sometimes it

is used to provide ordering or prioritization of tasks or service requests. For example, in

a corporate environment, a clerk might normally process requests based on the order they

are received, regardless of what the request is for or whom it is from. If the clerk were to

receive an executive’s request marked “urgent”, that clerk might choose to move the

executive’s request to the top of his to do list due a policy weighting executive requests

marked urgent as being of the highest priority. We can say that the executive receives a

different “quality of service” than everyone else the clerk serves, and possibly rightly so.

Quality of Service can also involve requirements that a task be performed in a correct

and/or timely manner or else it is not worth doing at all. For example, in grocery stores,

produce is commonly discarded when it begins to look undesirable, despite its flavor or

safety. The store simply has chosen that it is better to discard the food rather than sell

something that looks unappealing or might taste substandard.

In “Quality of Security Service” [IRV00], the authors introduce the concept that

in some environments, there is value in considering security as an additional dimension to

QoS, coining the term “Quality of Security Service” in the process. For the purposes of

this paper, the updated term “Dynamic Security Service” (DSS) will be used in place of

QoSS. It is argued that security assurances, like requirements of accuracy and timeliness,

can sometimes be either modulated within security contexts or traded on-and-off for other

benefits such as system performance or data protection. In the spirit of the earlier

examples, if a system were to receive a communication channel connection request to

handle sensitive but unclassified data, the security subsystem might consider fulfilling the

request for data transmission using only a moderate amount of cryptography if the

9

system’s CPU were moderately loaded or might choose to employ a higher-degree of

cryptography if the system’s CPU were lightly loaded. This “floating” level of security

service “quality” trades off secrecy and CPU availability. If however, the transmission of

top secret data were to be required, the security subsystem might require that a stronger

crypto algorithm be used, regardless of CPU availability or the resource-intensiveness of

the operation. What we see is that security mechanisms can sometimes be implemented

in a manner that does not necessarily result in negative trade-offs with other desirable

conditions in a system, while at the same time providing that critical tasks be granted

sufficient resources, regardless of the system’s state.

Due to its flexible nature and many possibilities in implementation, IPsec is given

as an example of an application that can be implemented within a DSS framework

[SYP02a]. The IPsec protocol can be implemented using various forms of encryption

and signing, each with a different potential impact on finite system resources such as

network bandwidth or CPU-availability. This variability in functionality can also be

played against factors such as external system threats in formulating a DSS policy that

automatically, or at the push of a button, adapts to the changing security environment. A

sample policy is represented by the following matrix:

 System Operational Mode

 Normal Crisis Impacted

Low AH: Integrity: MD5

ESP:Secrecy: DES

 Integrity: MD5

AH: Integrity:SHA1

ESP:Secrecy: 3DES

 Integrity:SHA1

AH: Integrity: MD5

ESP:Secrecy: DES

 Integrity: MD5

Medium AH: Integrity: MD5

ESP:Secrecy: CAST

 Integrity:SHA1

AH: Integrity:SHA1

ESP:Secrecy: 3DES

 Integrity:SHA1

AH: Integrity: MD5

ESP:Secrecy: DES

 Integrity: MD5

Sy
st

em
 S

ec
ur

ity
 L

ev
el

High AH: Integrity:SHA1

ESP:Secrecy: 3DES

 Integrity:SHA1

AH: Integrity:SHA1

ESP:Secrecy: AES

 Integrity:SHA1

AH: Integrity:SHA1

ESP:Secrecy: 3DES

 Integrity: MD5

Table 1. Sample Dynamic Security Services Policy Database for IPsec

10

In this table, the current “threat level” faced by the system is represented by the

column headings on the left, with “Low” indicating a low threat level and “High”

indicating the system may be in a “lock-down” state while under attack. The

“operational mode” dimension of the table might represent the availability of resources

such as the total available CPU time of the system. For example, if a system is operating

normally (Operational Mode = Normal) at a low threat level (Security level = Low) and a

new threat on the network is identified, the security level may be switched to “High”. In

this case, the current IPsec security associations for AH-protected communications using

the MD5 algorithm would be discarded. The IKE daemon would then consult its policy

database and determine the appropriate algorithm to use for AH-operations to be “SHA”.

Through the key-exchange cycle, new security associations would be created between

this host and its peers. Likewise, ESP-protected communications would stop using the

security associations created with DES and MD5, and new associations would be created

using 3DES and SHA. As covered in Chapter II.B, IPsec typically operates in a manner

transparent to network applications and therefore, transparent to users as well. Hence, in

the DSS framework, a change to a system’s security level, operational mode, or both is to

take place in a manner transparent to the end users and applications, hence

communications would not be disrupted.

If the system were to now experience an event such as the loss of a processing

node that would cause it to operate in an “impacted” state, as defined or determined by

the system manager, the dynamic security policy would dictate that AH-protected

communications continue to make use of the SHA algorithm, but that ESP-protected

communications use a new algorithm pairing. The IKE daemon would be required to

discard the security associations used for ESP-protected communications, consult its

policy database, and create and use a new set of security associations using the 3DES and

MD5 algorithms. Again, this shift in operational mode would take place without

disrupting communications.

D. INTEGRATING DSS INTO MYSEA

Traditionally, user interaction with an XTS-400 server takes place either at the

console, over a directly-connected terminal, or over a single-level network interface

directly from another trusted system such as a second XTS-400. In these situations, both

11

the user and the STOP assume the communication channel between the server and their

interface is secure; viz. that communications will not be maliciously manipulated,

dropped, or counterfeited. In today’s highly-networked environments, the assurance

requirements for a protected channel still remain, but the physical resource and distance

restrictions imposed by terminal solutions and the like are impractical. Additionally,

user-interface and cost issues add to this impracticality. These limitations are some of the

driving factors that have led to the development of the TPE. As stated above, the TPE

extends the trusted path out to a device that is separate from, yet co-located with, the

stateless client PCs used for end-user interaction with the MYSEA server. Essentially,

the TPE is a logical, as well as physical, extension of the MYSEA server. It is specified

to respond to commands and application data from the MYSEA server, including acting

as a router/NAT device while passing data on to the client PC. By its nature as a

separate, evaluated device running an evaluated kernel, the TPE is able to extend the

TCB to the boundary of the thin client. In the MYSEA environment, this extension of the

trusted path is a necessary requirement.

In addition to providing trusted path and application data delivery services

between the user and the MYSEA server, the TPE also provides what are termed

“cryptography services” as it serves as one endpoint of an encrypted tunnel to the

MYSEA server. The purpose for this cryptographic tunnel is both to protect the secrecy

of data exchanged between the TPE (or the client via the TPE) and the server, and to

authenticate communications between the TPE and the server. Authentication of traffic

aides in making the TPE-server channel unforgable. By thus designing a mechanism for

establishing secrecy and authentication between the TPE and the server, the network

between the two endpoints need not be protected from eavesdropping or spoofing.

Currently, implementation of these cryptographic services is being investigated using

IPsec.

As cryptographic services are inherently part of the TPE-MYSEA server pairing,

incorporating DSS to manage IPsec communications within this framework is a natural

progression. As was previously covered in the background on DSS/QoSS, conditions on

an operational network and on the nodes acting as endpoints on that network are often

subject to change. Should the MYSEA server automatically detect or be explicitly

12

notified of a critical change in the status of its environment, the network carrying TPE

communications, or relevant external conditions such as an increase in adversarial

penetration attempts, it may be desirable that the MYSEA server be able to automatically

raise the level of cryptographic or other security services between itself and any attached,

subordinate TPEs. Following from the work outlined in [SYP02a] this thesis will further

explore the integration of existing DSS proof-of-concept code into the MYSEA

environment. From this, we now have a TPE that not only provides for a distributed TCB

with a cryptographically-protected trusted path, but a TPE that is able to be dynamically

reconfigured by is MLS server master as new requirements emerge under evolving

operating conditions.

13

III. REQUIREMENTS, DESIGN, AND IMPLEMENTATION

A. REQUIREMENTS
The primary goal of this work is to integrate an existing IPsec-based DSS

prototype [SYP02b] into the MYSEA environment. The two requirements of this

integration effort work directly towards the implementation of two critical TPE services

within the MYSEA environment: protected communication channels between the server

and the TPE, and provision for DSS in managing these communication channels.

[IRV04]

1. Protected Communication Channels
The MYSEA environment mandates provision for cryptographic secrecy and/or

integrity protection of communications between the MYSEA server and the TPE,

including client communications that pass through the TPE en route to the MYSEA

server. While a fielded production environment may incorporate additional

communication protection mechanisms including hardware encryption devices and the

physical protection of networking equipment, this project implements and demonstrates

protection of the following application protocols in the following manners:

a. Protected Channel Protocol
In this implementation, all communications using the Protected Channel

Protocol across the MLS LAN are to be protected by IPsec operating in ESP mode. ESP

has been selected for cryptographic secrecy as communications using the Protected

Channel Protocol often contain sensitive authentication credentials (e.g. usernames,

passwords, etc.).

b. HTTP

HyperText Transfer Protocol (HTTP) or “web” traffic traversing the MLS

LAN is to be protected by IPsec operating in AH mode. HTTP has been chosen as the

initial test protocol because web assess it the primary capability supported by MYSEA as

well as is in common use in the DoD and commercial networks. The use of AH for

HTTP and ESP for Protected Channel Protocol demonstrates the capability of the system

to operate in both modes of IPsec operation at the same time. Upon deployment, HTTP

14

communications can be configured to operate under ESP and/or AH-protection following

appropriate configuration of the security gateways.

Operation of both IPsec protocols under their respective protection

mechanisms is demonstrated as part of this thesis research. Additionally, other

application protocols and services can be added under protected communication channels

by defining appropriate policies and flows for those services.

2. Dynamic Security Service
The second requirement of the MYSEA environment is to implement the

protected communication channel services listed above in a manner that incorporates

DSS. When fully implemented, the DSS policy will be dictated by the MYSEA server.

The TPE/client side of the MLS LAN is to essentially operate as a “drone” that simply

follows the DSS policy dictated by the MYSEA server. While a target of a complete

DSS implementation in the MYSEA environment is to have the MLS server control the

DSS security settings directly and dynamically, in this implementation it is sufficient that

the server-side component of the DSS subsystem control the active security policy.

B. DESIGN
This project has been broken-down into the following four stages, to reduce the

implementation complexity of the project at large into a series of less-complex steps,

each building on the former. Stages 1 and 2 are preliminary steps toward stages 3 and 4.

1. Implementation Stage 1

Figure 2. Stage 1 Design Topology

15

Figure 3. Stage 1 Logical Component Topology

Stage 1 reproduces former work in the DSS space [SYP02b] with some

reconfiguration and extension. In this scenario, the OpenBSD DSS systems are

configured to IPsec-protect the same protocols used in the former QoSS/DSS

demonstrations, “finger” and “telnet”. Unlike the former work however, the DSS

systems are extended to operate as IPsec security gateways, routing communications

between a client and a server while at the same time protecting those communications as

they pass over the shared MLS LAN. In this case, telnet and finger communications

originate from the DSS client machine on the right, cross the MLS LAN with IPsec

protection as mandated by the server-side gateway, are verified and, if necessary,

decrypted by the server-side DSS gateway. Finally, the packet is delivered to the server.

Server responses traverse the LAN in the reverse order and with the same protections

across the MLS LAN.

The former DSS implementation only permitted communication to be initiated

from the DSS system that dictated the DSS policies. In this stage however, the server-

side DSS gateway maintains control over the current policy set, but the client gateway is

permitted to initiate communication to or through the server gateway, as long as that

communication conforms to the system security policy.

16

2. Implementation Stage 2

Figure 4. Stage 2 Design Topology

Figure 5. Stage 2, 3, & 4 Logical Component Topology

Stage 2 extends Stage 1 by replacing the generic server offering telnet and finger

services with a MYSEA MLS server offering trusted path services and multilevel HTTP

services. Again, as communications pass over the MLS LAN, they are cryptographically

protected. Additionally, the configuration of the DSS subsystem is modified to protect

HTTP and the Protected Channel Protocol, per requirement #1.

In this stage, the concept of a “Emulated TPE” is also introduced. The emulated

TPE provides TPE services required by the MYSEA architecture, but may do so with

additional, non-TPE-related functionality or may require more than one physical

hardware or software component to provide such services. In this case, end-client

functionality has been collapsed into the system serving as the TPE.

The TPE user interface functionality including secure attention key, MLS server

login, secrecy/integrity level specification to the MLS server, etc. is provided through the

used of a Java program previously developed by the MYSEA research team. Before the

client-side system is permitted to make client-like application requests to the MYSEA

server for services such as HTTP, the TPE software must be used to initiate a session

with the MLS server.

17

3. Implementation Stage 3

Figure 6. Stage 3 Design Topology

In Stage 3, a separate computer running a COTS operating system (Windows

and/or Linux) is used as a MYSEA client. This configuration closely matches what is

exhibited in the upper-right quadrant of Figure 1 – a client COTS PC communicating

with a MLS server via a protected tunnel facilitated by the TPE. As stated in Chapter II,

Section D, client communication through the TPE undergoes network address translation

(NAT), making client communications appear to originate from the TPE from the

server’s perspective. The use of NAT adds complexity to the configuration of the

DSS/TPE gateway. The protected protocols under DSS management continue to be

HTTP and the Protected Channel Protocol.

Similar to Stage 2, the TPE user interface functionality (secure attention key,

login, secrecy/integrity level specification, etc.) is provided by the same Java program

described for Stage 2.

4. Implementation Stage 4

Figure 7. Stage 4 Design Topology

18

In the MYSEA environment, it is envisioned that the TPE device provides trusted

path functionality, DSS, and NAT all on the same system. Since the current TPE

prototype operating in a handheld form factor is not IPsec-aware, the DSS functionality

for Stage 4 remained on a separate system.. In this scenario, the TPE running Linux on

an iPAQ Pocket PC performs the user interface and NAT functions while the DSS

gateway is responsible for communication protection and dynamic security services.

The protected protocols with DSS management are HTTP and the Protected

Channel Protocol.

C. IMPLEMENTATION DETAILS AND CHALLENGES
All 4 stages outlined in the design section have been successfully completed.

This section outlines both implementation notes and difficulties faced in completing this

project while working through each stage.

1. Physical Network Topology

Figure 8. Physical Developmental Network Topology for Stage 4

When mapping the logical topologies of Stages 1 through 4 into physical

implementations, the decision was made to perform all network and host interconnection

via a single Ethernet hub. Through proper subnet definition on each participating

network interface on each host, every network interface was restricted to communicate

only with the hosts on its same logical network. During development, this created the

19

ability for a single host that is otherwise not a participant in the deployment to

promiscuously monitor (“sniff”) the traffic on all LAN segments, especially the MLS

LAN. The ability to monitor and analyze traffic flows greatly aided troubleshooting

when communications were not functioning correctly and enabled validation of correct

communication flow and protection.

As a sample, the physical topology for Stage 4 is provided in Figure 8. Each

interconnection line represents a host network interface with its address and subnet

designation, and lines with similar textures or line types are on the same logical subnet.

Upon deployment into the MYSEA test bed, the hub-based topology will be reconfigured

to more closely match the logical topologies by not using a shared network medium.

2. Stages 1 and 2
From its early definition, DSS has remained an important concept in the MYSEA

architecture, however while building on to and extending former MYSEA work in DSS,

the availability of knowledge and experience with functional aspects of the preexisting

DSS prototype was limited. Significant time was spent examining standard OpenBSD

source code, DSS-modified OpenBSD source, and custom-written code in an effort to

understand the system sufficiently well to extend it. While assembling background

research on DSS and IPsec, the OpenBSD manual pages provided some assistance, but

such help was generally limited, and in fact, the section in the OpenBSD FAQ dedicated

to using IPsec has been off-line for months [OPE04].

Under OpenBSD, IPsec communications are typically configured in one of two

ways: as statically defined and maintained channels using the ipsecadm utility or as

dynamically negotiated and constructed channels using the isakmpd subsystem. The

MYSEA DSS implementation of IPsec currently uses a hybrid of these two methods in its

construction of a secure communication channel with dynamic properties. First, a “flow”

must be defined from one DSS-enabled host to the other. The creation of IPsec flows is a

normal part of a static OpenBSD IPsec deployment. This flow must be created on the

DSS host that wishes to initiate protected communications with either the other DSS host

or a system behind that host. In these implementations, flows are defined on the client-

side DSS host for telnet, finger, HTTP, and the Protected Channel Protocol. The services

are differentiated from one another based on their IP port numbers. In this

20

implementation, the flows are created by the script “/root/initialize_flows” which is

called upon startup of the DSS system.

The second step in implementation is to configure the key management daemon.

Unlike basic ipsecadm-configured IPsec communications, security associations are

created and managed by the isakmpd subsystem. This involves configuring the file

/etc/isakmpd/isakmpd.conf for phase-1 IPsec communications. A sample isakmpd.conf is

included as an appendix. Once this file has been configured for a pair of DSS security

gateways, it is not likely to need to be changed, even if additional flows are to be added.

As the IKE daemon, isakmpd will use the IPsec flows created in the former step while

creating and destroying security associations as needed.

The third step is to define the DSS KeyNote policy for communications protection

between security gateways. This involves specification of which protocols are to be

protected by ESP and/or AH and what cryptographic algorithms are to be used. This

information is contained in the file /etc/isakmpd/isakmpd.policy on both DSS gateways.

3. Stages 3 and 4
The stage 3 implementation involves the addition of NAT functionality to the

client-side DSS gateway as the client is moved to a physically separate machine. This

created problems due to OpenBSD’s limitations in NAT functionality and the operating

system’s mechanism used for identifying and routing packets containing Protected

Channel Protocol communications. Protected Channel Protocol packets are identified by

both DSS gateway subsystems for IPsec protection based on the value of their IP source

port. It was discovered during implementation that if NAT is enabled under OpenBSD

3.0, the source port of every Protected Channel Protocol packet emerging from the

combination NAT/DSS gateway is changed from 6033 to a random, high-numbered port.

Due to this undesired manipulation of the IP source port, the KeyNote policies on the

DSS gateways had to be changed to identify TPE Protected Channel traffic by the

channel’s use of the UDP protocol rather than by the IP source port 6033. As a side-

effect, in a full, operational implementation with potentially dozens of protocols to be

managed, all UDP-based application protocols, such as the domain name service (DNS),

would fall under the same DSS policy as the Protected Channel Protocol. There may be

relief for this issue in versions of OpenBSD greater than 3.0 that contain increased NAT

21

functionality, including the ability to perform NAT on packets leaving the client-side

gateway while maintaining the packet’s original source port. This would enable the

KeyNote policy to again identify Protected Channel Protocol communications based on a

port specification rather than based on the UDP protocol alone.

Another NAT-related issue was encountered in Stage 3. IPsec rules must be

specified on the client-side DSS subsystem with the real addresses of both the client and

the MLS server. Upon client-side initiation of communications with the MYSEA server,

the server-side DSS gateway creates matching IPsec rules from the MLS server to the

client by essentially reversing the properties of the client-initiated rules. However, due to

NAT, the MLS server and the server-side DSS gateway are not able to directly

communicate with the client computer as server-to-client communications must be

proxied by the DSS/NAT gateway. For communications from the MLS server to receive

protection, IPsec rules are required to be explicitly defined in the vpn28_ah_a script

(appendix C, section A.1.a) on the server-side DSS gateway, specifying the destination as

the combined TPE/DSS gateway rather than the actual client computer. The extension of

Stage 3 to Stage 4 brought relief for both NAT issues as all NAT functionality was

moved to the external TPE.

During the implementation and testing of Stages 3 and 4, it was discovered that

following a dynamic policy reconfiguration by the server-side gateway, the next TPE-

initiated Protected Channel Protocol UDP packet triggers the creation of a new set of

security associations as expected, but that request is then dropped or “lost” by the client-

side IPsec gateway. It is possible that the first packet of each protocol protected by the

DSS IPsec gateway is dropped if security associations for that protocol do not already

exist, and that TCP-based application protocols such as HTTP are tolerant of the loss and

automatically retry their initial request. The current workaround for this issue is to

require the user to press the SAK on the TPE a second time if the first SAK did not

produce a server response. This workaround is not acceptable in a final DSS-enabled

IPsec implementation in the MYSEA testbed.

With the completion of Stages 3 and 4, two implementations of a set of protected

communications channels incorporating dynamic security services have been completed.

22

By building on an existing DSS prototype and extending it using a stepwise approach, the

goals of creating protected communication channels for different protocols used in the

MYSEA environment, each operating under different dynamic security service policies,

was met. Unit testing for correct functioning of the system is covered in Chapter IV, and

comments on possible future work, including further integration into the MYSEA testbed

are included in Chapter V.

23

IV. UNIT TESTING

When implementing a new system or extending an existing one, testing is

necessary to ensure the system complies with the requirements laid out prior to the design

of the system. Testing may uncover implementation and configuration errors, design

deficiencies, and/or unexpected functionality of the system. This test plan uses both

exhaustive and selective techniques to examine if the IPsec DSS implementation meets

the requirements specified in Chapter III.

A. TEST PLAN
The purpose of the unit test plan is to validate the system’s implementation

against the requirements laid out previously. Since both Stages 3 and 4 must be tested,

all of the following tests must be repeated in both environments unless otherwise noted.

The topology and setup for the tests are the same as those used for the demonstrations of

Stages 3 and 4 and are found in Appendicies A and B. The test procedures are found in

Appendix D.

1. Protection of Data Crossing the MLS LAN
The purpose of this test is to verify that communications purported to be protected

by IPsec services on the MLS LAN are, in fact, protected in a manner consistent with the

configured policy. While former work in Quality of Security Service at the Naval

Postgraduate School has involved some testing of the DSS (then-called QoSS) subsystem

for correct functionality in a point-to-point implementation, the extension of DSS-

enabled endpoints into security gateways not only requires testing of new functionality,

but also the retesting of preexisting functionality.

The test plan is presented in Table 2. The System Mode and System Level

indicate the current policy the server gateway will dictate. The Protocol Protected

indicates the client or TPE transactions that fall under the policy being tested and are

either “Protected Channel” or “HTTP”. The IPsec Protocol column indicates whether

AH or ESP protections should be applied to the protected protocol, and the Expected

Algorithm(s) column indicates which protection suite should be used by the IPsec

protocol under test.

24

Test

Number

System

Mode

System

Level

Protocol Protected IPsec

Protocol

Expected Algorithm(s)

on MLS LAN

a1 default default Protected Channel ESP DES/MD5

a2 default default HTTP AH MD5

a3 normal low Protected Channel ESP DES/MD5

a4 normal low HTTP AH MD5

a5 normal medium Protected Channel ESP CAST/SHA

a6 normal medium HTTP AH MD5

a7 normal high Protected Channel ESP 3DES/SHA

a8 normal high HTTP AH SHA

a9 crisis low Protected Channel ESP 3DES/SHA

a10 crisis low HTTP AH SHA

a11 crisis medium Protected Channel ESP 3DES/SHA

a12 crisis medium HTTP AH SHA

a13 crisis high Protected Channel ESP AES/SHA

a14 crisis high HTTP AH SHA

a15 impacted low Protected Channel ESP DES/MD5

a16 impacted low HTTP AH MD5

a17 impacted medium Protected Channel ESP DES/MD5

a18 impacted medium HTTP AH MD5

a19 impacted high Protected Channel ESP 3DES/MD5

a20 impacted high HTTP AH SHA

Table 2. MLS LAN Data Protection Test

25

NOTE: “SHA” and “MD5” in Table 2 are abbreviations for HMAC-SHA1 and

HMAC-MD5 implementations of IPsec message authenticity protection techniques.

2. Dynamic Policy Tear-Down
As the DSS gateways are being tested for properly following the current security

service policy, the dynamic nature of the system’s security associations must be tested.

Not only must the new algorithm used for protection be negotiated when there is a

change in the current DSS policy, but any SA’s created with the old algorithm must be

destroyed. The test cases described in Table 3 are based on the MLS LAN Data

Protection Test Suite. The test conditions column represents the test condition transitions

between two test scenarios. The last three columns show the expected results of a change

in security association and dynamic policy flows.

Security Association Properly Destroyed

Upon Policy Change:

Test Number System

Change

Conditions

(See Table

2 for

details)

Expected Server

Gateway Result

Expected Client

Gateway Result

Expected Status

of Dynamic

Policy Flows

on Server

Gateway

b1 a2 to a3 SA’s destroyed SA’s destroyed Deleted

b2 a3 to a4 SA’s destroyed SA’s destroyed Deleted

b3 a4 to a5 SA’s destroyed SA’s destroyed Deleted

b4 a14 to a15 SA’s destroyed SA’s destroyed Deleted

b5 a18 to a19 SA’s destroyed SA’s destroyed Deleted

b6 a19 to a20 SA’s destroyed SA’s destroyed Deleted

Table 3. Selective Dynamic Policy Tear-Down Test

26

3. Correct NAT Functionality
This test suite provides assurance that the DSS subsystem can properly handle

NAT’ed traffic. Network packet analysis for this test can be performed using an

additional computer attached to the network hub in a manner that allows it to view traffic

flows. Optionally, the traffic analysis can be performed on the server-side DSS gateway

running Ethereal software.

Test Number Client Protocol/Traffic

Type

Expected Client Address

On MLS LAN

Stage 3: 192.168.1.100 c1 Protected Channel Protocol

Stage 4: 192.168.2.11

Stage 3: 192.168.1.100 c2 HTTP

Stage 4: 192.168.2.11

Table 4. NAT Functionality Test

Table 4 shows the expected values of the source and destination IP addresses for

both client-to-server requests and server-to-client responses for Protected Channel

Protocol and HTTP as the requests and responses cross the MLS LAN. The addresses

correspond to the MLS LAN-side address of the NAT system.

B. TEST REPORT
This section provides the results of the testing of Stages 3 and 4 of the DSS-

enabled IPsec implementation. Tables 2 through 4 have been replicated below, and an

additional column added to each indicating the results of the test.

1. Stage 3 Testing

The following test results are the result of testing in the Stage 3 environment.

a. MLS LAN Data Protection Test

This test demonstrates that the DSS IPsec subsystem uses the correct

protection algorithms in accordance with the system security policy.

27

Test

Number

System

Mode

System

Level

Protocol

Protected

IPsec

Protocol

Expected

Algorithm(s)

on MLS

LAN

Observed

Algorithm(s)

on MLS LAN

a1 default default Protected Chnl. ESP DES/MD5 DES/MD5

a2 default default HTTP AH MD5 MD5

a3 normal low Protected Chnl. ESP DES/MD5 DES/MD5

a4 normal low HTTP AH MD5 MD5

a5 normal medium Protected Chnl. ESP CAST/SHA CAST/SHA

a6 normal medium HTTP AH MD5 MD5

a7 normal high Protected Chnl. ESP 3DES/SHA 3DES/SHA

a8 normal high HTTP AH SHA SHA

a9 crisis low Protected Chnl. ESP 3DES/SHA 3DES/SHA

a10 crisis low HTTP AH SHA SHA

a11 crisis medium Protected Chnl. ESP 3DES/SHA 3DES/SHA

a12 crisis medium HTTP AH SHA SHA

a13 crisis high Protected Chnl. ESP AES/SHA AES/SHA

a14 crisis high HTTP AH SHA SHA

a15 impacted low Protected Chnl. ESP DES/MD5 DES/MD5

a16 impacted low HTTP AH MD5 MD5

a17 impacted medium Protected Chnl. ESP DES/MD5 DES/MD5

a18 impacted medium HTTP AH MD5 MD5

a19 impacted high Protected Chnl. ESP 3DES/MD5 3DES/MD5

a20 impacted high HTTP AH SHA SHA

Table 5. Stage 3 MLS LAN Data Protection Test Results

28

b. Selective Dynamic Policy Tear-Down Test
This test demonstrates that the DSS subsystem correctly destroys security

associations upon a transition between any two given test cases from the MLS LAN Data

Protection Test.

Security Association Properly

Destroyed Upon Policy Change:

Test

Number

System

Change

Conditions

(See Table

2 for

details)

Expected

Server

Gateway

Result

Expected

Client

Gateway

Result

Expected

Status of

Dynamic

Policy Flows

on Server

Gateway

Observed

Status of

Dynamic

Policy Flows

on Server

Gateway

b1 a2 to a3 SA’s destroyed SA’s destroyed Deleted Deleted

b2 a3 to a4 SA’s destroyed SA’s destroyed Deleted Deleted

b3 a4 to a5 SA’s destroyed SA’s destroyed Deleted Deleted

b4 a14 to a15 SA’s destroyed SA’s destroyed Deleted Deleted

b5 a18 to a19 SA’s destroyed SA’s destroyed Deleted Deleted

b6 a19 to a20 SA’s destroyed SA’s destroyed Deleted Deleted

Table 6. Stage 3 Selective Dynamic Policy Tear-Down Test Results

c. NAT Functionality Test
This test demonstrates the DSS subsystem can properly handle NAT’ed

traffic. Network packet analysis for this test was performed using a computer attached to

the network hub in a manner that allows it to view all traffic flows.

29

Test

Number

Client Protocol/Traffic

Type

Expected Client Address

On MLS LAN

Observed Client

Address On MLS LAN

c1 Protected Channel Protocol 192.168.1.100 192.168.1.100

c2 HTTP 192.168.1.100 192.168.1.100

Table 7. Stage 3 NAT Functionality Test Results

2. Stage 4 Testing
The following test results are the result of testing in the Stage 4 environment.

a. MLS LAN Data Protection Test
This test demonstrates that the DSS subsystem uses the correct protection

algorithms in accordance with the system security policy.

30

Test

Number

System

Mode

System

Level

Protocol

Protected

IPsec

Protocol

Expected

Algorithm(s)

on MLS

LAN

Observed

Algorithm(s)

on MLS LAN

a1 default default Protected Chnl. ESP DES/MD5 DES/MD5

a2 default default HTTP AH MD5 MD5

a3 normal low Protected Chnl. ESP DES/MD5 DES/MD5

a4 normal low HTTP AH MD5 MD5

a5 normal medium Protected Chnl. ESP CAST/SHA CAST/SHA

a6 normal medium HTTP AH MD5 MD5

a7 normal high Protected Chnl. ESP 3DES/SHA 3DES/SHA

a8 normal high HTTP AH SHA SHA

a9 crisis low Protected Chnl. ESP 3DES/SHA 3DES/SHA

a10 crisis low HTTP AH SHA SHA

a11 crisis medium Protected Chnl. ESP 3DES/SHA 3DES/SHA

a12 crisis medium HTTP AH SHA SHA

a13 crisis high Protected Chnl. ESP AES/SHA AES/SHA

a14 crisis high HTTP AH SHA SHA

a15 impacted low Protected Chnl. ESP DES/MD5 DES/MD5

a16 impacted low HTTP AH MD5 MD5

a17 impacted medium Protected Chnl. ESP DES/MD5 DES/MD5

a18 impacted medium HTTP AH MD5 MD5

a19 impacted high Protected Chnl. ESP 3DES/MD5 3DES/MD5

a20 impacted high HTTP AH SHA SHA

Table 8. Stage 4 MLS LAN Data Protection Test Results

31

b. Selective Dynamic Policy Tear-Down Test
This test demonstrates that the DSS IPsec subsystem correctly destroys

security associations upon a transition between any two given test cases from the MLS

LAN Data Protection Test.

Security Association Properly

Destroyed Upon Policy Change:

Test

Number

System

Change

Conditions

(See Table

2 for

details)

Expected

Server

Gateway

Result

Expected

Client

Gateway

Result

Expected

Status of

Dynamic

Policy Flows

on Server

Gateway

Observed

Status of

Dynamic

Policy Flows

on Server

Gateway

b1 a2 to a3 SA’s destroyed SA’s destroyed Deleted Deleted

b2 a3 to a4 SA’s destroyed SA’s destroyed Deleted Deleted

b3 a4 to a5 SA’s destroyed SA’s destroyed Deleted Deleted

b4 a14 to a15 SA’s destroyed SA’s destroyed Deleted Deleted

b5 a18 to a19 SA’s destroyed SA’s destroyed Deleted Deleted

b6 a19 to a20 SA’s destroyed SA’s destroyed Deleted Deleted

Table 9. Stage 4 Selective Dynamic Policy Tear-Down Test Results

c. NAT Functionality Test
This test demonstrates the DSS subsystem can properly handle NAT’ed

traffic. Network packet analysis for this test was performed using a computer attached to

the network hub in a manner that allows it to view all traffic flows.

32

Test

Number

Client Protocol/Traffic

Type

Expected Client Address

On MLS LAN

Observed Client Address

On MLS LAN

c1 Protected Channel

Protocol

192.168.2.11 192.168.2.11

c2 HTTP 192.168.2.11 192.168.2.11

Table 10. Stage 4 NAT Functionality Test Results

33

V. FUTURE WORK AND CONCLUSIONS

A. FUTURE WORK
The MYSEA architecture is constantly undergoing development, extension, and

refinement, and as part of this environment, it is expected the IPsec-DSS subsystem will

experience similar evolution. The following issues have been identified as follow-on

work that will advance the MYSEA project as well.

1. Multi-user/Multi-TPE Integration and Testing
An immediate follow-on project to this work is to integrate multiple client-side

DSS gateways, TPEs, and clients with the current server-side DSS gateway and MLS

server. Integration is expected to be relatively straightforward with only changes

required in the configuration of the isakmpd daemon and the definition of additional DSS

rule pairings on the server-side gateway and the client-side gateways. Additionally,

testing of multiple simultaneous sessions with different IPsec/IKE policies would be

required to ensure communications between a given TPE and the MLS server are

correctly delivered to that TPE and are afforded appropriate integrity and secrecy

protections.

2. MLS Server Control Over Dynamic Security Policy
In the MYSEA environment, policy and access control for all components,

including the DSS subsystem, is to be controlled by the MYSEA MLS server. Since the

security policies are currently manually entered into the DSS security gateways, an

automated mechanism should be implemented for the MLS server to contact the server-

side DSS gateway, change its current policy attributes, and trigger isakmpd to notify the

client-side DSS gateway of the policy change. In the current system architecture, this can

be accomplished by establishing a connection to the server gateway, updating or creating

a new dynamic policy file, and forcing a reconfiguration and restart of isakmpd via the

daemon’s filesystem FIFO interface.

3. Integration of the DSS Gateways into the MLS Server and TPE
To further integrate the DSS subsystem into the MYSEA architecture, the

functionality of the DSS gateways should be ported from the OpenBSD systems onto the

MYSEA MLS server and the TPE prototype. At a minimum, both integration targets

34

must support IPsec, and ideally, both IPsec implementations would be fully compatible

with isakmpd’s operation. Since an IPsec implementation for the XTS-400’s STOP is not

available at this time and IPsec support for the Pocket PC-based TPE is limited, this work

may require a significant investment of time and manpower to realize.

4. Mechanism for MLS Server to Update TPE
Another project that is important to a complete implementation of secure server-

to-TPE communications with DSS is the ability of the MLS server to not only dictate the

security policies the TPE must follow, but also remotely update the TPE in a secure

manner with new policy and flow definitions, updated packet filtering and NAT rules,

and other system-level changes such as software patches.

B. CONCLUSIONS
This project has produced a dynamic security service-enabled IPsec subsystem for

the MYSEA environment. This implementation has afforded adaptable secrecy and

integrity protection for both sensitive authentication and integrity-critical information

delivery tasks in the MYSEA environment. By also providing a dynamic resource-aware

dimension to the protection of data communications, MYSEA operating policies can be

constructed in a manner that makes optimal use of finite system resources in the

execution of security functions. It is envisioned that as threats are introduced into the

MYSEA testbed and system resources are made available or are consumed by the

completion or execution of tasks, the MYSEA trusted components will be able to

dynamically adjust its operational security policies in a manner that provides for business

continuity while maintaining high assurance.

In a broader scope, the concepts demonstrated in this system can aid the

development of the Global Information Grid by providing flexible, policy-aware secrecy

and integrity assurance. The underlying goals of the MYSEA project remain focused on

developing, refining, and integrating practices, products, and services that closely match

the requirements of the GIG. As the GIG is extended to mesh the networks, users, and

missions of DoD, law enforcement, and intelligence communities, the concepts of

dynamic security services for the protection of network communications become

essential.

35

APPENDIX A: STAGE 3 SYSTEM INSTALLATION AND
DEMONSTRATION

These instructions describe how to setup and execute a demonstration of the DSS

system in a Stage 3 implementation. In this scenario, client-server HTTP communication

is facilitated through the use of a software TPE for authentication services. The DSS

IPsec subsystem is used to provide ESP cryptographic secrecy and integrity protection for

the authentication protocol and AH integrity protection for the HTTP protocol.

Included in this demonstration is normal TPE functionality including login,

session level negotiation, and session level renegotiation combined with DSS policy

modulation. It is shown that the DSS implementation unobtrusively augments normal

MYSEA LAN functionality while providing TPE authentication services, NAT

functionality, and DSS on the same physical system.

36

A. Network Topology

Figure 9. Stage 3 Logical Network Topology

B. Equipment Requirements

B.1. XTS-400

B.1.1. MYSEA environment installed and configured

B.1.2. Set the default route for MLS LAN tcpip daemon to the MLS LAN
address of the server gateway (servergw, 192.168.0.27)

37

B.1.3. MLS LAN IP address of TPE (192.168.1.100) must be listed in
/usr/local/mysea/tcbe_list

B.1.4. The TPE-facing address of the MYSEA server has been configured to
192.168.0.130

B.2. Combination Security Gateway and TPE

B.2.1. Intel x86 Pentium-class machine or better

B.2.2. Video card supported under XFree86 4.1.0

B.2.3. Two (2) OpenBSD 3.0-supported network interfaces

B.3. Server-Side Gateway System

B.3.1. Intel x86 Pentium-class machine or better

B.3.2. Video card supported under XFree86 4.1.0

B.3.3. Two (2) OpenBSD 3.0-supported network interfaces

B.4. Additional equipment

B.4.1. Hubs, switches, cables, and/or cross-over cables sufficient to implement
the network architecture pictured above

B.4.2. OpenBSD 3.0 install media.

B.4.3. MYSEA Dynamic Security Service install media (CD-ROM)

C. Installation and Configuration

C.1. TPE Gateway System

C.1.1. Install OpenBSD 3.0 from CD

C.1.2. If OpenBSD is preinstalled and has its networking configured, the
following changes may be necessary:

C.1.2.1. Modify /etc/hosts to include correct IP address-hostname
pairings for this system, per the instructions below and the architecture
depicted above

C.1.2.2. Modify /etc/myname to contain the correct hostname of the
system

C.1.2.3. Modify /etc/hostname.IF_NAME with correct IP address
information where “IF_NAME” is the name of each network interface
on the system

C.1.2.4. Modify /etc/mygate to contain the system’s default gateway

C.1.2.5. The remaining OS install instructions can be skipped

C.1.3. Configure hard disk to have one partition (the ‘a’ partition) with most of
the disk space, leaving between 200-500 meg for the swap partition.

C.1.4. Configure:

38

System name: tpegw1

No domain

IP address of the MLS-LAN facing interface: 192.168.1.100

Netmask: 255.255.255.0

Default route: 192.168.1.1

Primary nameserver: ‘none’

IP address of the client-facing interface: 192.168.2.1

Netmask 255.255.255.0

No default route

C.1.5. See the MLS LAN administrator for the password to use for the ‘root’
user.

C.1.6. Install all sets from the CD.

C.1.7. After install, if the system will not boot, rewrite the master boot record:

C.1.7.1. Boot using a DOS floppy or Windows 98 install CD containing
fdisk

C.1.7.2. Run fdisk /mbr

C.1.8. Other system configuration

C.1.8.1. Configure X-Windows

C.1.8.2. Configure X-Windows to start automatically:

C.1.8.3. Edit /etc/rc.conf

change: xdm_flags=NO

to: xdm_flags=””

C.1.8.4. Configure NAT (Network Address Translation)

C.1.8.4.1. Enable packet forwarding

Edit /etc/sysctl.conf

change: #net.inet.ip.forwarding=1

to: net.inet.ip.forwarding=1

C.1.8.4.2. Enable firewall (PF) and NAT

Edit /etc/rc.conf

change: pf=NO

to: pf=YES

C.1.8.4.3. Edit NAT configuration

39

Edit /etc/nat.conf, adding the following line to the bottom of
the file:
nat on enc0 from 192.168.2.0/24 to
192.168.0.0/24 -> 192.168.1.100

A sample /etc/nat.conf can be found on the DSS Install CD
in the /tpegw/etc directory.

C.1.8.4.4. The NAT-changes will be applied upon the next system reboot.

C.1.8.5. Add the following lines to /etc/fstab
/dev/fd0a /mnt/floppy msdos rw,-l,noauto 0 0

/dev/cd0a /mnt/cdrom cd9660 ro,noauto 0 0

/kern /kern kernfs ro 0 0

C.1.8.6. Create the mount directories

C.1.8.6.1. mkdir /mnt/floppy

C.1.8.6.2. mkdir /mnt/cdrom

C.1.8.6.3. mkdir /kern

C.1.9. Install Kaffe (Java)

C.1.9.1. Mount the DSS Install CD: mount /mnt/cdrom

C.1.9.2. Add the Kaffe package
pkg_add –v /mnt/cdrom/packages/kaffe-1.0.6.tgz

It may be necessary to install other packages Kaffe depends on. These
packages are located in the same directory as the Kaffe package.

C.1.9.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe”

C.1.9.4. Run the script which installs ‘swing.jar’
cd /mnt/cdrom/isakmp_mon_responder

./inst

C.1.10. Reboot.

C.2. Server-Side Gateway System

C.2.1. Install OpenBSD 3.0 from CD

C.2.2. If OpenBSD is preinstalled and has its networking configured, the
following changes may be necessary:

40

C.2.2.1. Modify /etc/hosts to include correct IP address-hostname
pairings for this system, per the instructions below and the architecture
depicted above

C.2.2.2. Modify /etc/myname to contain the correct hostname of the
system

C.2.2.3. Modify /etc/hostname.IF_NAME with correct IP address
information where “IF_NAME” is the name of each network interface
on the system

C.2.2.4. Modify /etc/mygate to contain the system’s default gateway

C.2.2.5. The remaining OS install instructions can be skipped

C.2.3. Configure hard disk to have one partition (the ‘a’ partition) with most of
the disk space, leaving between 200-500 meg for the swap partition.

C.2.4. Configure:

System name: servergw

No domain

IP address of the MLS-LAN facing interface: 192.168.1.1

Netmask: 255.255.255.0

Default route: 192.168.1.100

Primary nameserver: ‘none’

IP address of the MLS-server-facing interface: 192.168.0.27

Netmask 255.255.255.0

No default route

C.2.5. See the MLS LAN administrator for the password to use for the ‘root’ user

C.2.6. Install all sets from the CD.

C.2.7. After install, if the system will not boot, rewrite the master boot record:

C.2.7.1. Boot using a DOS floppy or Windows 98 install CD containing
fdisk

C.2.7.2. Run fdisk /mbr

C.2.8. Other system configuration

C.2.8.1. Configure X-Windows

C.2.8.2. Configure X-Windows to start automatically:

C.2.8.3. Edit /etc/rc.conf

change: xdm_flags=NO

to: xdm_flags=””

41

C.2.8.4. Configure NAT (Network Address Translation)

C.2.8.4.1. Enable packet forwarding

Edit /etc/sysctl.conf

change: #net.inet.ip.forwarding=1

to: net.inet.ip.forwarding=1

C.2.8.4.2. Enable firewall (PF) and NAT

Edit /etc/rc.conf

change: pf=NO

to: pf=YES

C.2.8.5. Add the following lines to /etc/fstab
/dev/fd0a /mnt/floppy msdos rw,-l,noauto 0 0

/dev/cd0a /mnt/cdrom cd9660 ro,noauto 0 0

/kern /kern kernfs ro 0 0

C.2.8.6. Create the mount directories

C.2.8.6.1. mkdir /mnt/floppy

C.2.8.6.2. mkdir /mnt/cdrom

C.2.8.6.3. mkdir /kern

C.2.9. Install Kaffe (Java)

C.2.9.1. Mount the DSS Install CD: mount /mnt/cdrom

C.2.9.2. Add the Kaffe package
pkg_add –v /mnt/cdrom/packages/kaffe-1.0.6.tgz

It may be necessary to install other packages Kaffe depends on. These
packages are located in the same directory as the Kaffe package.

C.2.9.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe”

C.2.9.4. Run the script which installs ‘swing.jar’

C.2.9.4.1. cd /mnt/cdrom/isakmp_mon_responder

C.2.9.4.2. ./inst

C.2.10. Reboot

C.3. DSS Changes on Combination Security Gateway and TPE

C.3.1. Optional – Install Ethereal (network packet analyzer)

42

C.3.1.1. Mount the OpenBSD 3.0 CD1

C.3.1.2. Add the Ethereal package (and any other packages it depends on)
with the command:

pkg_add –v /mnt/cdrom/3.0/packages/i386/ethereal-
0.8.19.tgz

C.3.1.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe
/usr/local/bin/pth”

C.3.2. Install kernel and isakmpd code changes

C.3.2.1. Install the OpenBSD 3.0 source

C.3.2.1.1. Mount the OpenBSD 3.0 CD3

C.3.2.1.2. cd /usr/src

C.3.2.1.3. tar zxvf /mnt/cdrom/src.tar.gz

C.3.2.2. Install updated system files

C.3.2.2.1. Mount the DSS Install CD

C.3.2.2.2. cd /tmp

C.3.2.2.3. tar zxvf /mnt/cdrom/cvs.tar.gz

C.3.2.3. Copy the changed files into /usr/src

C.3.2.3.1. cd /tmp/src/sbin/isakmpd

C.3.2.3.2. cp ipsec.c pf_key_v2.c sa.h sa.c ui.c
/usr/src/sbin/isakmpd

C.3.2.3.3. cp /tmp/src/sys/net/pfkeyv2.c
/usr/src/sys/net

C.3.2.3.4. cp /tmp/src/sys/netinet/ip_spd.c
/usr/src/sys/netinet

C.3.2.4. Rebuild the kernel

C.3.2.4.1. cd /usr/src/sys/arch/i386/conf

C.3.2.4.2. config GENERIC

C.3.2.4.3. cd ../compile/GENERIC

C.3.2.4.4. make depend ; make

C.3.2.4.5. mv /bsd /bsd.orig

C.3.2.4.6. cp bsd /bsd

C.3.2.4.7. Rebuild isakmpd

43

C.3.2.4.8. cd /usr/src/sbin/isakmpd

C.3.2.4.9. make obj ; make depend ; make ; make
install

C.3.2.5. Setup isakmpd configuration files

C.3.2.5.1. Mount the DSS Install CD

C.3.2.5.2. cd /mnt/cdrom/tpegw/etc/isakmpd

C.3.2.5.3. cp isakmpd.conf /etc/isakmpd/

C.3.2.5.4. cp isakmpd.policy* /etc/isakmpd/

C.3.2.5.5. cd /etc/isakmpd

C.3.2.5.6. chmod 600 isakmpd.conf

C.3.2.5.7. chmod 600 isakmpd.policy*

C.3.2.5.8. mv isakmpd.policy.NAT isakmpd.policy

C.3.2.6. Install policy setup, Java TPE, and DSS GUI files

C.3.2.6.1. cd /mnt/cdrom/tpegw/root

C.3.2.6.2. cp –R ./* /root

C.3.2.6.3. cd /root

C.3.2.6.4. mv initialize_flows.NAT initialize_flows

C.3.2.7. Test the java installation by executing /root/tpe

C.4. DSS Changes on Server-Side Gateway System

C.4.1. Optional – Install Ethereal (network packet analyzer)

C.4.1.1. Mount the OpenBSD 3.0 CD1

C.4.1.2. Add the Ethereal package (and any other packages it depends on)
with the command:

pkg_add –v /mnt/cdrom/3.0/packages/i386/ethereal-
0.8.19.tgz

C.4.1.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe
/usr/local/bin/pth”

C.4.2. Install kernel and isakmpd code changes

C.4.2.1. Install the OpenBSD 3.0 source

C.4.2.1.1. Mount the OpenBSD 3.0 CD3

C.4.2.1.2. cd /usr/src

44

C.4.2.1.3. tar zxvf /mnt/cdrom/src.tar.gz

C.4.2.2. Install updated system files

C.4.2.2.1. Mount the DSS Install CD

C.4.2.2.2. cd /tmp

C.4.2.2.3. tar zxvf /mnt/cdrom/cvs.tar.gz

C.4.2.3. Copy the changed files into /usr/src

C.4.2.3.1. cd /tmp/src/sbin/isakmpd

C.4.2.3.2. cp GNUmakefile Makefile conf.c conf.h
exchange.c ike_quick_mode.c init.c ipsec.c
message.c pf_key_v2.c policy.c sa.h sa.c
ui.c chriscode1.c chriscode1.h chriscode2.c
chriscode2.h chrisstruct.h
/usr/src/sbin/isakmpd

C.4.2.3.3. cd regress/x509

C.4.2.3.4. cp Makefile
/usr/src/sbin/isakmpd/regress/x509

C.4.2.3.5. cd /tmp/src/lib/libkeynote

C.4.2.3.6. cp Makefile.in environment.c keynote.h
tree.h keynote-dnf.l keynote-dnf.y
/usr/src/lib/libkeynote

C.4.2.3.7. cp /tmp/src/sys/net/pfkeyv2.c
/usr/src/sys/net

C.4.2.3.8. cp /tmp/src/sys/netinet/ip_spd.c
/usr/src/sys/netinet

C.4.2.4. Rebuild the kernel

C.4.2.4.1. cd /usr/src/sys/arch/i386/conf

C.4.2.4.2. config GENERIC

C.4.2.4.3. cd ../compile/GENERIC

C.4.2.4.4. make depend ; make

C.4.2.4.5. mv /bsd /bsd.orig

C.4.2.4.6. cp bsd /bsd

C.4.2.5. Rebuild the keynote libraries

C.4.2.5.1. cd /usr/src/lib/libkeynote

C.4.2.5.2. ./configure

C.4.2.5.3. make

45

C.4.2.5.4. cp libkeynote.a /usr/lib

C.4.2.5.5. cp keynote.h /usr/include

C.4.2.5.6. cp keynote /usr/bin

C.4.2.5.7. chmod a-w /usr/include/keynote.h
/usr/bin/keynote

C.4.2.5.8. chgrp bin /usr/bin/keynote

C.4.2.6. Rebuild isakmpd

C.4.2.6.1. cd /usr/src/sbin/isakmpd

C.4.2.6.2. make obj ; make depend ; make ; make
install

C.4.2.7. Setup isakmpd configuration files

C.4.2.7.1. Mount the DSS Install CD

C.4.2.7.2. cd /mnt/cdrom/servergw/etc/isakmpd

C.4.2.7.3. cp isakmpd.conf /etc/isakmpd

C.4.2.7.4. cp isakmpd.policy* /etc/isakmpd

C.4.2.7.5. cp dynamic_parameters /etc/isakmpd

C.4.2.7.6. cd /etc/isakmpd

C.4.2.7.7. chmod 600 isakmpd.conf

C.4.2.7.8. chmod 600 isakmpd.policy*

C.4.2.7.9. mv isakmpd.policy.NAT isakmpd.policy

C.4.3. Install java programs

C.4.3.1. Install policy setup, Java TPE, and DSS GUI files

C.4.3.1.1. Mount the DSS Install CD

C.4.3.1.2. cd /mnt/cdrom/servergw/root

C.4.3.1.3. cp –R ./* /root

C.4.3.2. Test the java installation by executing /root/isakmp

C.4.4. Enable flows for MLS server-to-client traffic

C.4.4.1. mv /root/vpn28_ah_a.NAT /root/vpn28_ah_a

D. Demonstration Scenario

D.1. DSS Demonstration Setup

D.1.1. Setup the MYSEA server

D.1.1.1. Log into the server

46

D.1.1.2. Switch to SL max:max

D.1.1.3. Issue the command “startup” to start the TPS daemon

D.1.2. Setup the OpenBSD Server-Side Gateway System (servergw)

D.1.2.1. Boot the system and login as root

D.1.2.2. Open an xterm window

D.1.2.3. Start the demonstration GUI by executing ./isakmp

D.1.2.4. Start the ISAKMP daemon by clicking “Start isakmpd”

D.1.2.5. Click on “Load Default DP” to load the default policy

D.1.2.6. Throughout the demo, isakmpd will generate syslog messages
referencing “duplicate tags” and “negotiated SA failed policy check”.
These are remnant debugging statements inserted into isakmpd by the
MYSEA development team and are not errors.

D.1.3. Setup the OpenBSD Combination Gateway/TPE System (tpegw1)

D.1.3.1. Boot the system and login as root

D.1.3.2. Open two xterm windows

D.1.3.3. Start the demonstration GUI by executing ./isakmp in one of
the xterms

D.1.3.4. Start the Java TPE by executing ./tpe in the second xterm.

D.1.3.5. Click the portion of the TPE containing the IP address

D.1.3.6. Change the IP address to 192.168.0.130 if necessary and
press ENTER

D.1.4. The client machine can be any operating system. The client must:

D.1.4.1. Be configured with IP address 192.168.2.11

D.1.4.2. Have its default route set to 192.168.2.1 (Gateway/TPE)

D.1.4.3. Have a web browser installed

D.1.4.4. Have a telnet client installed if DSS telnet functionality is to be
demonstrated

D.2. DSS Demonstration

D.2.1. On the Server-Side Gateway System (servergw)

D.2.1.1. Click on “Security Association Database”

D.2.1.2. Click on “Security Policy Database”

D.2.1.3. The security associations should be empty and the policy database
should only contain flows from the MLS server to the TPE.

D.2.1.4. No associations exist, and the server gateway creates additional
policy entries after the TPE side requests services and the server

47

verifies that the requested services and protocols are allowable by
security policy.

D.2.1.5. The security policy is viewable by clicking “Display Security
Policy”.

D.2.1.6. Click on “Dynamic Parameterization”

D.2.1.7. Arrange the windows on the screen; the order of importance is:

Security Associations

Security Policy Database

Dynamic Parameter Selection

D.2.2. On the Combination Gateway/TPE System (tpegw1)

D.2.2.1. Click on “Security Association Database”

D.2.2.2. Click on “Security Policy Database”

D.2.2.3. The Security Associations should be empty as none exist yet.

D.2.2.4. The policy entries should exist for each type of flow we want to
allow under DSS management.

D.2.2.5. Optionally, start Ethereal to watch network traffic exchanges.

D.2.2.6. Click the Secure Attention Key (SAK) in the TPE application

D.2.2.7. Initially, you may need to press the SAK twice

D.2.2.8. Log in with a username and password pair as prompted

D.2.2.9. Press the SAK

D.2.2.10. Issue the “sl” command

D.2.2.11. Select a secrecy level (sl1)

D.2.2.12. Select an integrity level (il3)

D.2.2.13. Press the SAK

D.2.2.14. Issue the “run” command

D.2.2.15. If Ethereal has been running on the TPE Gateway, you should be
able to note that TPE login actions have been protected with IPsec ESP.

D.2.3. On the client:

D.2.3.1. Open the web site: http://192.168.0.130/

Every page should return a listing of your current secrecy and integrity
levels

D.2.3.2. Browse the site as normal

D.2.4. View Current Security Associations

48

D.2.4.1. The Security Association windows on both gateways should show
the current security associations (SA).

D.2.4.2. Make note of the encryption and authentication algorithms in the
phase-2 SA.

D.2.4.3. On the Server-Side Gateway System (servergw), press the
“Refresh” button in the Security Policy Database window.

The policy should show that TPE traffic (udp, protocol 17) is protected by
protocol 50, encapsulating security protocol (ESP)

The policy should also show that HTTP traffic (port 80) is protected by
protocol 51, authentication header (AH)

This should match traffic captured by the network analyzer

D.2.5. Simulate a Change in Network Security Policy with Dynamic-
Reparameterization

D.2.5.1. On the Server-Side Gateway System (servergw):

D.2.5.1.1. In the “Dynamic Parameter” window, select a different
combination of level and mode (e.g. crisis and high)

D.2.5.1.2. Click the “Submit” button

Notice the phase-2 security associations have been deleted on both
systems.

Refreshing the “Security Policy Database” window will show the flow
policies have been flushed as well.

D.2.5.2. On the client:

D.2.5.2.1. Refresh the web page currently being viewed

Again, the page should return a listing of the same secrecy and
integrity levels as before.

D.2.5.2.2. You may browse the site as normal.

D.2.6. View Newly-Created Security Associations

D.2.6.1. The Security Association windows on both gateways should again
show any current security associations (SA).

D.2.6.2. Note the encryption and authentication algorithms in the phase-2
SA’s are different than before.

D.2.6.3. On the Server-Side Gateway System (servergw), press the
“Refresh” button in the Security Policy Database window.

The policy should again show that HTTP traffic (port 80) is protected by
protocol 51, authentication header (AH)

As we have not generated TPE traffic since the re-parameterization, an
entry for TPE traffic has not yet been recreated under the new policy.

49

D.2.7. Simulate a Change in the User’s Secrecy Level

D.2.7.1. In the TPE application:

D.2.7.1.1. Press the Secure Attention Key (SAK)

D.2.7.1.2. You may need to press the SAK twice

D.2.7.1.3. Issue the “sl” command

D.2.7.1.4. Select a new secrecy level (sl3)

D.2.7.1.5. Select a integrity level (il3)

D.2.7.1.6. Press the SAK

D.2.7.1.7. Issue the “run” command

If the SA’s are viewed now, ESP-protected entries should again exist
for TPE traffic.

D.2.7.1.8. On the client:

D.2.7.1.8.1. Refresh the web page currently being viewed

The page should now return a listing of the new secrecy and
integrity level selected on the TPE.

Note that the protection algorithms are not (necessarily) related to
the secrecy or the integrity levels of the authenticated user.

Browse the site as normal if desired

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

APPENDIX B: STAGE 4 SYSTEM INSTALLATION AND
DEMONSTRATION

These instructions describe how to setup and execute a demonstration of the DSS

system in a Stage 4 implementation. In this scenario, client-server HTTP communication

is facilitated through the use of a physically separate TPE for authentication services.

The DSS IPsec subsystem is used to provide ESP cryptographic secrecy and integrity

protection for the authentication protocol and AH integrity protection for the HTTP

protocol.

Included in this demonstration is normal TPE functionality including login,

session level negotiation, and session level renegotiation combined with DSS policy

modulation. It is shown that the DSS implementation unobtrusively augments normal

MYSEA LAN functionality while providing DSS in a manner that incorporates an

existing handheld TPE prototype.

52

A. Network Topology

Figure 10. Stage 4 Logical Network Topology

B. Equipment Requirements

B.1. XTS-400

B.1.1. MYSEA environment installed and configured

53

B.1.2. Set the default route for MLS LAN tcpip daemon to the MLS LAN
address of the server gateway (servergw, 192.168.0.27)

B.1.3. External IP address of TPE (192.168.2.11) must be listed in
/usr/local/mysea/tcbe_list

B.1.4. The TPE-facing address of the MYSEA server has been configured to
192.168.0.130

B.2. TPE Gateway System

B.2.1. Intel x86 Pentium-class machine or better

B.2.2. Video card supported under XFree86 4.1.0

B.2.3. Two (2) OpenBSD 3.0-supported network interfaces

B.3. Server-Side Gateway System

B.3.1. Intel x86 Pentium-class machine or better

B.3.2. Video card supported under XFree86 4.1.0

B.3.3. Two (2) OpenBSD 3.0-supported network interfaces

B.4. TPE

B.4.1. Compaq iPAQ running Familiar Linux with support for network address
translation (NAT)

B.4.2. Two supported Ethernet interfaces

B.5. Additional equipment

B.5.1. Hubs, switches, cables, and/or cross-over cables sufficient to implement
the network architecture pictured above

B.5.2. OpenBSD 3.0 install media.

B.5.3. MYSEA Dynamic Security Service install media (CD-ROM)

C. Installation and Configuration

C.1. TPE Gateway System

C.1.1. Install OpenBSD 3.0 from CD

C.1.2. If OpenBSD is preinstalled and has its networking configured, the
following changes may be necessary:

C.1.2.1. Modify /etc/hosts to include correct IP address-hostname
pairings for this system, per the instructions below and the architecture
depicted above

C.1.2.2. Modify /etc/myname to contain the correct hostname of the
system

C.1.2.3. Modify /etc/hostname.IF_NAME with correct IP address
information where “IF_NAME” is the name of each network interface
on the system

54

C.1.2.4. Modify /etc/mygate to contain the system’s default gateway

C.1.2.5. The remaining OS install instructions can be skipped

C.1.3. Configure hard disk to have one partition (the ‘a’ partition) with most of
the disk space, leaving between 200-500 meg for the swap partition.

C.1.4. Configure:

System name: tpegw1

No domain

IP address of the MLS-LAN facing interface: 192.168.1.100

Netmask: 255.255.255.0

Default route: 192.168.1.1

Primary nameserver: ‘none’

IP address of the TPE-facing interface: 192.168.2.1

Netmask 255.255.255.0

No default route

C.1.5. See the MLS LAN administrator for the password to use for the ‘root’
user.

C.1.6. Install all sets from the CD.

C.1.7. After install, if the system will not boot, rewrite the master boot record:

C.1.7.1. Boot using a DOS floppy or Windows 98 install CD containing
fdisk

C.1.7.2. Run fdisk /mbr

C.1.8. Other system configuration

C.1.8.1. Configure X-Windows

C.1.8.2. Configure X-Windows to start automatically:

C.1.8.3. Edit /etc/rc.conf

change: xdm_flags=NO

to: xdm_flags=””

C.1.8.4. Configure NAT (Network Address Translation)

C.1.8.4.1. Enable packet forwarding

Edit /etc/sysctl.conf

change: #net.inet.ip.forwarding=1

to: net.inet.ip.forwarding=1

C.1.8.4.2. Enable firewall (PF) and NAT

55

Edit /etc/rc.conf

change: pf=NO

to: pf=YES

C.1.8.5. Add the following lines to /etc/fstab
/dev/fd0a /mnt/floppy msdos rw,-l,noauto 0 0

/dev/cd0a /mnt/cdrom cd9660 ro,noauto 0 0

/kern /kern kernfs ro 0 0

C.1.8.6. Create the mount directories

C.1.8.6.1. mkdir /mnt/floppy

C.1.8.6.2. mkdir /mnt/cdrom

C.1.8.6.3. mkdir /kern

C.1.9. Install Kaffe (Java)

C.1.9.1. Mount the DSS Install CD: mount /mnt/cdrom

C.1.9.2. Add the Kaffe package
pkg_add –v /mnt/cdrom/packages/kaffe-1.0.6.tgz

It may be necessary to install other packages Kaffe depends on. These
packages are located in the same directory as the Kaffe package.

C.1.9.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe”

C.1.9.4. Run the script which installs ‘swing.jar’
cd /mnt/cdrom/isakmp_mon_responder

./inst

C.1.10. Reboot.

C.2. Server-Side Gateway System

C.2.1. Install OpenBSD 3.0 from CD

C.2.2. If OpenBSD is preinstalled and has its networking configured, the
following changes may be necessary:

C.2.2.1. Modify /etc/hosts to include correct IP address-hostname
pairings for this system, per the instructions below and the architecture
depicted above

C.2.2.2. Modify /etc/myname to contain the correct hostname of the
system

56

C.2.2.3. Modify /etc/hostname.IF_NAME with correct IP address
information where “IF_NAME” is the name of each network interface
on the system

C.2.2.4. Modify /etc/mygate to contain the system’s default gateway

C.2.2.5. The remaining OS install instructions can be skipped

C.2.3. Configure hard disk to have one partition (the ‘a’ partition) with most of
the disk space, leaving between 200-500 meg for the swap partition.

C.2.4. Configure:

System name: servergw

No domain

IP address of the MLS-LAN facing interface: 192.168.1.1

Netmask: 255.255.255.0

Default route: 192.168.1.100

Primary nameserver: ‘none’

IP address of the MLS-server-facing interface: 192.168.0.27

Netmask 255.255.255.0

No default route

C.2.5. See the MLS LAN administrator for the password to use for the ‘root’ user

C.2.6. Install all sets from the CD.

C.2.7. After install, if the system will not boot, rewrite the master boot record:

C.2.7.1. Boot using a DOS floppy or Windows 98 install CD containing
fdisk

C.2.7.2. Run fdisk /mbr

C.2.8. Other system configuration

C.2.8.1. Configure X-Windows

C.2.8.2. Configure X-Windows to start automatically:

C.2.8.3. Edit /etc/rc.conf

change: xdm_flags=NO

to: xdm_flags=””

C.2.8.4. Configure NAT (Network Address Translation)

C.2.8.4.1. Enable packet forwarding

Edit /etc/sysctl.conf

change: #net.inet.ip.forwarding=1

57

to: net.inet.ip.forwarding=1

C.2.8.4.2. Enable firewall (PF) and NAT

Edit /etc/rc.conf

change: pf=NO

to: pf=YES

C.2.8.5. Add the following lines to /etc/fstab
/dev/fd0a /mnt/floppy msdos rw,-l,noauto 0 0

/dev/cd0a /mnt/cdrom cd9660 ro,noauto 0 0

/kern /kern kernfs ro 0 0

C.2.8.6. Create the mount directories

C.2.8.6.1. mkdir /mnt/floppy

C.2.8.6.2. mkdir /mnt/cdrom

C.2.8.6.3. mkdir /kern

C.2.9. Install Kaffe (Java)

C.2.9.1. Mount the DSS Install CD: mount /mnt/cdrom

C.2.9.2. Add the Kaffe package
pkg_add –v /mnt/cdrom/packages/kaffe-1.0.6.tgz

It may be necessary to install other packages Kaffe depends on. These
packages are located in the same directory as the Kaffe package.

C.2.9.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe”

C.2.9.4. Run the script which installs ‘swing.jar’

C.2.9.4.1. cd /mnt/cdrom/isakmp_mon_responder

C.2.9.4.2. ./inst

C.2.10. Reboot

C.3. DSS Changes on TPE Gateway System

C.3.1. Optional – Install Ethereal (network packet analyzer)

C.3.1.1. Mount the OpenBSD 3.0 CD1

C.3.1.2. Add the Ethereal package (and any other packages it depends on)
with the command:

pkg_add –v /mnt/cdrom/3.0/packages/i386/ethereal-
0.8.19.tgz

58

C.3.1.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe
/usr/local/bin/pth”

C.3.2. Install kernel and isakmpd code changes

C.3.2.1. Install the OpenBSD 3.0 source

C.3.2.1.1. Mount the OpenBSD 3.0 CD3

C.3.2.1.2. cd /usr/src

C.3.2.1.3. tar zxvf /mnt/cdrom/src.tar.gz

C.3.2.2. Install updated system files

C.3.2.2.1. Mount the DSS Install CD

C.3.2.2.2. cd /tmp

C.3.2.2.3. tar zxvf /mnt/cdrom/cvs.tar.gz

C.3.2.3. Copy the changed files into /usr/src

C.3.2.3.1. cd /tmp/src/sbin/isakmpd

C.3.2.3.2. cp ipsec.c pf_key_v2.c sa.h sa.c ui.c
/usr/src/sbin/isakmpd

C.3.2.3.3. cp /tmp/src/sys/net/pfkeyv2.c
/usr/src/sys/net

C.3.2.3.4. cp /tmp/src/sys/netinet/ip_spd.c
/usr/src/sys/netinet

C.3.2.4. Rebuild the kernel

C.3.2.4.1. cd /usr/src/sys/arch/i386/conf

C.3.2.4.2. config GENERIC

C.3.2.4.3. cd ../compile/GENERIC

C.3.2.4.4. make depend ; make

C.3.2.4.5. mv /bsd /bsd.orig

C.3.2.4.6. cp bsd /bsd

C.3.2.4.7. Rebuild isakmpd

C.3.2.4.8. cd /usr/src/sbin/isakmpd

C.3.2.4.9. make obj ; make depend ; make ; make
install

C.3.2.5. Setup isakmpd configuration files

59

C.3.2.5.1. Mount the DSS Install CD

C.3.2.5.2. cd /mnt/cdrom/tpegw/etc/isakmpd

C.3.2.5.3. cp isakmpd.conf /etc/isakmpd/

C.3.2.5.4. cp isakmpd.policy /etc/isakmpd/

C.3.2.5.5. chmod 600 /etc/isakmpd/isakmpd.conf

C.3.2.5.6. chmod 600 /etc/isakmpd/isakmpd.policy

C.3.2.6. Install policy setup, Java TPE, and DSS GUI files

C.3.2.6.1. cd /mnt/cdrom/tpegw/root

C.3.2.6.2. cp –R ./* /root

C.3.2.7. Test the java installation by executing /root/tpe

C.4. DSS Changes on Server-Side Gateway System

C.4.1. Optional – Install Ethereal (network packet analyzer)

C.4.1.1. Mount the OpenBSD 3.0 CD1

C.4.1.2. Add the Ethereal package (and any other packages it depends on)
with the command:

pkg_add –v /mnt/cdrom/3.0/packages/i386/ethereal-
0.8.19.tgz

C.4.1.3. Edit the configuration for added shared libraries

Add the following line to /etc/rc.conf:
shlib_dirs=”/usr/local/bin/kaffe
/usr/local/bin/pth”

C.4.2. Install kernel and isakmpd code changes

C.4.2.1. Install the OpenBSD 3.0 source

C.4.2.1.1. Mount the OpenBSD 3.0 CD3

C.4.2.1.2. cd /usr/src

C.4.2.1.3. tar zxvf /mnt/cdrom/src.tar.gz

C.4.2.2. Install updated system files

C.4.2.2.1. Mount the DSS Install CD

C.4.2.2.2. cd /tmp

C.4.2.2.3. tar zxvf /mnt/cdrom/cvs.tar.gz

C.4.2.3. Copy the changed files into /usr/src

C.4.2.3.1. cd /tmp/src/sbin/isakmpd

60

C.4.2.3.2. cp GNUmakefile Makefile conf.c conf.h
exchange.c ike_quick_mode.c init.c ipsec.c
message.c pf_key_v2.c policy.c sa.h sa.c
ui.c chriscode1.c chriscode1.h chriscode2.c
chriscode2.h chrisstruct.h
/usr/src/sbin/isakmpd

C.4.2.3.3. cd regress/x509

C.4.2.3.4. cp Makefile
/usr/src/sbin/isakmpd/regress/x509

C.4.2.3.5. cd /tmp/src/lib/libkeynote

C.4.2.3.6. cp Makefile.in environment.c keynote.h
tree.h keynote-dnf.l keynote-dnf.y
/usr/src/lib/libkeynote

C.4.2.3.7. cp /tmp/src/sys/net/pfkeyv2.c
/usr/src/sys/net

C.4.2.3.8. cp /tmp/src/sys/netinet/ip_spd.c
/usr/src/sys/netinet

C.4.2.4. Rebuild the kernel

C.4.2.4.1. cd /usr/src/sys/arch/i386/conf

C.4.2.4.2. config GENERIC

C.4.2.4.3. cd ../compile/GENERIC

C.4.2.4.4. make depend ; make

C.4.2.4.5. mv /bsd /bsd.orig

C.4.2.4.6. cp bsd /bsd

C.4.2.5. Rebuild the keynote libraries

C.4.2.5.1. cd /usr/src/lib/libkeynote

C.4.2.5.2. ./configure

C.4.2.5.3. make

C.4.2.5.4. cp libkeynote.a /usr/lib

C.4.2.5.5. cp keynote.h /usr/include

C.4.2.5.6. cp keynote /usr/bin

C.4.2.5.7. chmod a-w /usr/include/keynote.h
/usr/bin/keynote

C.4.2.5.8. chgrp bin /usr/bin/keynote

C.4.2.6. Rebuild isakmpd

61

C.4.2.6.1. cd /usr/src/sbin/isakmpd

C.4.2.6.2. make obj ; make depend ; make ; make
install

C.4.2.7. Setup isakmpd configuration files

C.4.2.7.1. Mount the DSS Install CD

C.4.2.7.2. cd /mnt/cdrom/servergw/etc/isakmpd

C.4.2.7.3. cp isakmpd.conf /etc/isakmpd

C.4.2.7.4. cp isakmpd.policy /etc/isakmpd

C.4.2.7.5. cp dynamic_parameters /etc/isakmpd

C.4.2.7.6. chmod 600 /etc/isakmpd/isakmpd.conf

C.4.2.7.7. chmod 600 /etc/isakmpd/isakmpd.policy

C.4.3. Install java programs

C.4.3.1. Install policy setup, Java TPE, and DSS GUI files

C.4.3.1.1. mount /mnt/cdrom

C.4.3.1.2. cd /mnt/cdrom/servergw/root

C.4.3.1.3. cp –R ./* /root

C.4.3.2. Test the java installation by executing /root/isakmp

C.5. TPE

C.5.1. Copy/create TPE configuration files into /root

C.5.1.1. Mount the DSS Install CD

C.5.1.2. For the file /tpe/masq:

C.5.1.2.1. open the file in a text editor

C.5.1.2.2. “copy” the entire contents of the file to the clipboard

C.5.1.2.3. When connected to the iPAQ via serial link:

C.5.1.2.4. cd /root

C.5.1.2.5. cat > masq << DONE

C.5.1.2.6. “paste” the contents of the clipboard into the terminal window

C.5.1.2.7. type DONE

C.5.1.2.8. Make the file executable: chmod u+x masq

C.5.1.3. Repeat for the file /tpe/net_config

62

C.5.1.4. NOTE: If these files are transferred using the “Z-modem” utility,
following the transfers, each file must have the “^M” character removed
from the end of each line.

D. Demonstration Scenario

D.1. DSS Demonstration Setup

D.1.1. Setup the MYSEA server

D.1.1.1. Log into the server

D.1.1.2. Switch to SL max:max

D.1.1.3. Issue the command “startup” to start the TPS daemon

D.1.2. Setup the TPE/iPAQ

D.1.2.1. You must use the top Ethernet card for the connection to the TPE-
Side Gateway and the lower card for the connection to the client

D.1.2.2. Reboot the iPAQ once the cabling is complete

D.1.2.3. Run the script “/root/net_config start” to initialize
networking

D.1.2.4. Start the TPE GUI

D.1.3. Setup the OpenBSD Server-Side Gateway System (servergw)

D.1.3.1. Boot the system and login as root

D.1.3.2. Open an xterm window

D.1.3.3. Start the demonstration GUI by executing ./isakmp

D.1.3.4. Start the ISAKMP daemon by clicking “Start isakmpd”

D.1.3.5. Click on “Load Default DP” to load the default policy

D.1.3.6. Throughout the demo, isakmpd will generate syslog messages
referencing “duplicate tags” and “negotiated SA failed policy check”.
These are remnant debugging statements inserted into isakmpd by the
MYSEA development team and are not errors.

D.1.4. Setup the OpenBSD TPE-Side Gateway System (tpegw1)

D.1.4.1. Boot the system and login as root

D.1.4.2. Open an xterm window

D.1.4.3. Start the demonstration GUI by executing ./isakmp

D.1.5. The client machine can be any operating system. The client must:

D.1.5.1. Be configured with IP address 192.168.3.11

D.1.5.2. Have its default route set to 192.168.3.1 (TPE)

D.1.5.3. Have a web browser installed

63

D.1.5.4. Have a telnet client installed if DSS telnet functionality is to be
demonstrated

D.2. DSS Demonstration

D.2.1. On the Server-Side Gateway System (servergw)

D.2.1.1. Click on “Security Association Database”

D.2.1.2. Click on “Security Policy Database”

D.2.1.3. Both of these views should be empty.

D.2.1.4. No associations exist, and the server gateway creates policy entries
after the TPE side requests services and the server verifies that the
requested services and protocols are allowable by security policy.

D.2.1.5. The security policy is viewable by clicking “Display Security
Policy”.

D.2.1.6. Click on “Dynamic Parameterization”

D.2.1.7. Arrange the windows on the screen; the order of importance is:

Security Associations

Security Policy Database

Dynamic Parameter Selection

D.2.2. On the TPE-Side Gateway System (tpegw1)

D.2.2.1. Click on “Security Association Database”

D.2.2.2. Click on “Security Policy Database”

D.2.2.3. The Security Associations should be empty as none exist yet.

D.2.2.4. The policy entries should exist for each type of flow we want to
allow under DSS management.

D.2.2.5. Optionally, start Ethereal to watch network traffic exchanges.

D.2.3. On the TPE

D.2.3.1. Press the Secure Attention Key (SAK)

D.2.3.2. Initially, you may need to press the SAK twice.

D.2.3.3. Log in with a username and password pair as prompted

D.2.3.4. Press the SAK

D.2.3.5. Issue the “sl” command

D.2.3.6. Select a secrecy level (sl1)

D.2.3.7. Select an integrity level (il3)

D.2.3.8. Press the SAK

D.2.3.9. Issue the “run” command

64

D.2.3.10. If Ethereal has been running on the TPE Gateway, you should be
able to note that TPE login actions have been protected with IPsec ESP.

D.2.4. On the client:

D.2.4.1. Open the web site: http://192.168.0.130/

Every page should return a listing of your current secrecy and integrity
levels

D.2.4.2. Browse the site as normal

D.2.5. View Current Security Associations

D.2.5.1. The Security Association windows on both gateways should show
the current security associations (SA).

D.2.5.2. Make note of the encryption and authentication algorithms in the
phase-2 SA.

D.2.5.3. On the Server-Side Gateway System (servergw), press the
“Refresh” button in the Security Policy Database window.

The policy should show that TPE traffic (port 6033) is protected by
protocol 50, encapsulating security protocol (ESP)

The policy should also show that HTTP traffic (port 80) is protected by
protocol 51, authentication header (AH)

This should match traffic captured by the network analyzer

D.2.6. Simulate a Change in Network Security Policy with Dynamic-
Reparameterization

D.2.6.1. On the Server-Side Gateway System (servergw):

D.2.6.1.1. In the “Dynamic Parameter” window, select a different
combination of level and mode (e.g. crisis and high)

D.2.6.1.2. Click the “Submit” button

Notice the phase-2 security associations have been deleted on both
systems.

Refreshing the “Security Policy Database” window will show the flow
policies have been flushed as well.

D.2.6.2. On the client:

D.2.6.2.1. Refresh the web page currently being viewed

Again, the page should return a listing of the same secrecy and
integrity levels as before.

D.2.6.2.2. You may browse the site as normal.

D.2.7. View Newly-Created Security Associations

65

D.2.7.1. The Security Association windows on both gateways should again
show any current security associations (SA).

D.2.7.2. Note the encryption and authentication algorithms in the phase-2
SA’s are different than before.

D.2.7.3. On the Server-Side Gateway System (servergw), press the
“Refresh” button in the Security Policy Database window.

The policy should again show that HTTP traffic (port 80) is protected by
protocol 51, authentication header (AH)

As we have not generated TPE traffic (port 6033) since the re-
parameterization, an entry for TPE traffic has not yet been recreated under
the new policy.

D.2.8. Simulate a Change in the User’s Secrecy Level

D.2.8.1. On the TPE:

D.2.8.1.1. Press the Secure Attention Key (SAK)

D.2.8.1.2. You may need to press the SAK twice

D.2.8.1.3. Issue the “sl” command

D.2.8.1.4. Select a new secrecy level (sl3)

D.2.8.1.5. Select a integrity level (il3)

D.2.8.1.6. Press the SAK

D.2.8.1.7. Issue the “run” command

If the SA’s are viewed now, ESP-protected entries should again exist
for TPE traffic on port 6033.

D.2.8.1.8. On the client:

D.2.8.1.8.1. Refresh the web page currently being viewed

The page should now return a listing of the new secrecy and
integrity level selected on the TPE.

Note that the protection algorithms are not (necessarily) related to
the secrecy or the integrity levels of the authenticated user.

Browse the site as normal if desired

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX C: CONFIGURATION FILES

This section contains DSS-related configuration files and notation on the purpose,

maintenance, and extension of each file.

A. STAGE 3

1. Server-Side DSS Gateway

a. /root/vpn28_ah_a
This script creates policy “flows” or rules for use by the ISAKMP

subsystem under OpenBSD. In the Stage 3 implementation, the policy flows

automatically propagated from the client-side gateway do not instruct the server-side

gateway to apply any IPsec protection to packets sent to the client or the combined

TPE/DSS gateway. This is due to the client-side gateway’s NAT configuration. These

policy flows establish correct tunnels for IPsec protection of outbound communication.

Outbound flows defined by this file correspond to inbound flows defined in the file

/root/initialize_flows on the client-side gateway.

This script is executed upon the system administrator executing a startup

or re-initialization of the ISAKMP subsystem on the server-side IPsec gateway.

Typically, startup and initialization is initiated from the DSS/QoSS Java GUI.

#!/bin/sh

NAT-enabled version

This script creates the flows that ISAKMPD will use with any security
associations (SA) that it creates. This script *must* be run before
this
host will be able to *initiate* any IPsec-protected communications.

jfh: In the general DSS architecture/CONOPS, the TPE/Client gateway
is
the initiator. Due to OpenBSD's order of flagging a packet for
IPsec protection, performing NAT, and actually applying the
IPsec
protection, coupled with version 3.0's limited functionality for
NAT options, flows "back" to the TPE must be manually created on
on this system in this file.

Basically, *WITHOUT* these flows, even though packets are
protected
from the TPE/gateway to the MLS LAN gateway, they will not be

68

put into any existing tunnel and protected on the way back.

Path to binary
IPSECADM=/sbin/ipsecadm

Local and remote hosts, nets, netmasks
LOCAL_GATEWAY=192.168.1.1
REMOTE_GATEWAY=192.168.1.100

LOCAL_NET=192.168.0.0
REMOTE_NET=192.168.1.100

NETMASK_24=255.255.255.0
NETMASK_32=255.255.255.255

remove (flush) any current flows

$IPSECADM flush

Set-up flows for the two specific hosts
Use for defining applications FINGER and TELNET
ESP for TELNET (tcp 23) and TPE (udp SOURCE 6033)
AH for FINGER (tcp 79) and HTTP (tcp 80)
-dport for egress traffic
-sport for ingress traffic

#egress flow for finger
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_32 \
 -transport tcp -sport 79 \
 -src $LOCAL_GATEWAY -out -require

#egress flow for telnet
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_32 \
 -transport tcp -sport 23 \
 -src $LOCAL_GATEWAY -out -require

#egress flow for http
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_32 \
 -transport tcp -sport 80 \
 -src $LOCAL_GATEWAY -out -require

69

exit 0

b. /etc/isakmpd/isakmpd.conf
This file contains the configuration of the server-side ISAKMP daemon

used in IPsec. Specifications in this file include what IP address the daemon is to listen

on for requests, what protocol is to be used to protect the key exchange negotiation

process, and a listing of the client side DSS gateway “peers” with which the server-side

daemon must communicate. Although not yet tested, to add a new DSS gateway and

TPE to the MLS LAN, an additional section similar to the one defined beneath “[Peer-

192.168.1.100/192.168.1.1]” would need to be added with the correct IP address

information. Note that “Phase 2” or “Quick Mode” definitions should not exist in this

file.

[General]
Listen-on= 192.168.1.1
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120

#setup to work specifically with qoss02 with new configuration style
[Phase 1]
192.168.1.100= Peer-192.168.1.100/192.168.1.1

#setup to work specifically with qoss02 with new configuration style
[Peer-192.168.1.100/192.168.1.1]
Phase= 1
Local-address= 192.168.1.1
Address= 192.168.1.100
Transport= udp
Configuration= Default-main-mode
Authentication= mekmitasdigoat

[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

Certificates stored in PEM format
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/qoss01.key

70

c. /etc/isakmpd/isakmpd.policy
This file is used by the KeyNote policy subsystem to specify the security

policy for IPsecfor protection of certain network communications based on the

operational mode and security level of the network. To support new protocols, new

entries must be created in this file, specifying the protection policy for every combination

of security policy and operational mode.

Most entries in this file are specified based on source or destination TCP/

or UDP port. In a Stage 3 implementation, due to the unpredictability of port numbering

for Protected Communication Protocol communications between the TPE and the MLS

server, the application protocol is controlled based on its transport protocol of “udp”.

KeyNote-Version: 2
Comment: Policy file for Network Modes and Security Levels
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: ((app_domain == "IPsec policy") &&
 (
 ((network_mode == "normal") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&

71

 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "cast") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "impacted") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 (

72

 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-md5")

73

)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "crisis") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&

74

 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "aes") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "default") &&
 (security_level == "default") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_proto == "udp") ||
(remote_filter_proto == "udp")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||

75

 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
)
)
 -> "true";

2. Client-Side DSS Gateway

a. /root/initialize_flows
This script creates policy “flows” or rules for use by the ISAKMP

subsystem under OpenBSD. These policy flows establish correct routing paths or tunnels

for IPsec protection of outbound communication, and requirements for specific inbound

communications to arrive with IPsec protection applied.

For additional protocols to be protected under the current DSS IPsec

implementation, additional inbound and outbound flows must be defined in this file for

each well-known port to be protected. Additionally, in a Stage 3 implementation, a

matching outbound flow must be added to the file /root/vpn28_ah_a on the server-side

gateway.

This script is executed by the client-side DSS start up script /root/isakmp.

#!/bin/sh

NAT-enabled version

This script creates the flows that ISAKMPD will use with any security
associations (SA) that it creates. This script *must* be run before
this
host will be able to *initiate* any IPsec-protected communications.

#jfh: When the TPE and client-side security gateway are running on the
same
host, the flow for the TPE traffic must be modified from a net-
to-net
flow to a host-to-net flow. See the last pairings in this file.

Path to binary

76

IPSECADM=/sbin/ipsecadm

Local and remote hosts, nets, netmasks
LOCAL_GATEWAY=192.168.1.100
REMOTE_GATEWAY=192.168.1.1

LOCAL_NET=192.168.2.0
LOCAL_NET2=192.168.1.100
REMOTE_NET=192.168.0.0

NETMASK_24=255.255.255.0
NETMASK_32=255.255.255.255

remove (flush) any current flows

$IPSECADM flush

Set-up flows for the two specific hosts
Use for defining applications FINGER and TELNET
ESP for TELNET (tcp 23) and TPE (udp SOURCE 6033)
AH for FINGER (tcp 79) and HTTP (tcp 80)
-dport for egress traffic
-sport for ingress traffic

#egress flow for finger
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport tcp -dport 79 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for finger
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport tcp -sport 79 \
 -src $REMOTE_GATEWAY -in -require

#egress flow for telnet
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport tcp -dport 23 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for telnet
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport tcp -sport 23 \
 -src $REMOTE_GATEWAY -in -require

77

#egress flow for http
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport tcp -dport 80 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for http
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport tcp -sport 80 \
 -src $REMOTE_GATEWAY -in -require

#egress flow for TPE services, CLIENT PORT 6033
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $LOCAL_NET2 $NETMASK_32 $REMOTE_NET $NETMASK_24 \
 -transport udp \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for TPE services, CLIENT PORT 6033
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET2 $NETMASK_32 \
 -transport udp \
 -src $REMOTE_GATEWAY -in -require

exit 0

b. /etc/isakmpd/isakmpd.conf
This file contains the configuration of the client-side ISAKMP daemon

used in IPsec. Specifications in this file include what IP address the daemon is to listen

on for requests, what protocol is to be used to protect the key exchange negotiation

process, and a listing of the server side DSS gateway “peer” with which the client-side

daemon must communicate. The only lines likely to require changes for use by a second

client and TPE are under the “General”, “Phase 1”, and “Peer” sections.

[General]
Listen-on= 192.168.1.1
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120

#setup to work specifically with qoss02 with new configuration style
[Phase 1]

78

192.168.1.100= Peer-192.168.1.100/192.168.1.1

#setup to work specifically with qoss02 with new configuration style
[Peer-192.168.1.100/192.168.1.1]
Phase= 1
Local-address= 192.168.1.1
Address= 192.168.1.100
Transport= udp
Configuration= Default-main-mode
Authentication= mekmitasdigoat

[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

Certificates stored in PEM format
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/qoss01.key

c. /etc/isakmpd/isakmpd.policy
This file defines the KeyNote policy for protection of certain network

communications based on the operational mode and security level of the network. Since

the more restrictive policy definition is formulated on the server-side gateway, this policy

file must be written in a manner that only specifies which protocols must receive AH

protection and which must receive “ESP” protection.

KeyNote-Version: 2
Comment: This policy accepts ESP SAs from a remote that uses the right
password
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: app_domain == "IPsec policy" &&
 ((esp_present == "yes") &&
 ((
 (local_filter_port == "23") || (remote_filter_port
== "23") ||
 (local_filter_proto == "udp") || (remote_filter_proto
== "udp")
) &&
 ((esp_enc_alg == "des") || (esp_enc_alg == "3des") ||
(esp_enc_alg == "aes") ||
 (esp_enc_alg == "cast") || (esp_enc_alg ==
"blowfish")))
) ||
 ((ah_present == "yes") &&
 ((

79

 (local_filter_port == "79") || (remote_filter_port ==
"79") ||
 (local_filter_port == "80") || (remote_filter_port ==
"80")
) &&
 ((ah_auth_alg == "hmac-md5") || (ah_auth_alg == "hmac-
sha") ||
 (ah_auth_alg == "hmac-ripemd")))
) -> "true";

d. /etc/nat.conf
This file configures network address translation of traffic passing from the

client, through the TPE, and on to the MLS server in a Stage 3 implementation. The

active rule changes the source address and source port of packets originating on the client

to appear to the MLS server side of the network to originate from the TPE. The “enc0”

interface is a virtual network interface, internal to the network stack. NAT must be

applied to this virtual interface so the outbound packet is rewritten before IPsec

protection is applied to it.

In a Stage 4 implementation, this file must not exist or must not contain

any valid NAT rules.

See nat.conf(5) for syntax and more examples

NOTES:
NAT is part of the firewall (pf) and requires "pf" to be
enabled in /etc/rc.conf

In later versions of OpenBSD, this file, nat.conf, has
been merged into the packet filter configuration (pf.conf)

#jfh: to be removed when integrating external TPE (iPAQ)
nat on enc0 from 192.168.2.0/24 to 192.168.0.0/24 -> 192.168.1.100

B. STAGE 4

1. Server-Side DSS Gateway

a. /root/vpn28_ah_a
In a Stage 3 implementation, this script creates policy “flows” or rules for

use by the ISAKMP subsystem under OpenBSD. In the Stage 4 implementation, this

80

script is not needed, but must be present to avoid the generation of error messages by the

DSS/QoSS Java GUI.

#!/bin/sh

exit 0

b. /etc/isakmpd/isakmpd.conf
This file contains the configuration of the server-side ISAKMP daemon

used in IPsec. Specifications in this file include what IP address the daemon is to listen

on for requests, what protocol is to be used to protect the key exchange negotiation

process, and a listing of the client side DSS gateway “peers” with which the server-side

daemon must communicate. Although not yet tested, to add a new DSS gateway and

TPE to the MLS LAN, an additional section similar to the one defined beneath “[Peer-

192.168.1.100/192.168.1.1]” would need to be added with the correct IP address

information. Note that “Phase 2” or “Quick Mode” definitions should not exist in this

file.

[General]
Listen-on= 192.168.1.1
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120

#setup to work specifically with qoss02 with new configuration style
[Phase 1]
192.168.1.100= Peer-192.168.1.100/192.168.1.1

#setup to work specifically with qoss02 with new configuration style
[Peer-192.168.1.100/192.168.1.1]
Phase= 1
Local-address= 192.168.1.1
Address= 192.168.1.100
Transport= udp
Configuration= Default-main-mode
Authentication= mekmitasdigoat

[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

81

Certificates stored in PEM format
[X509-certificates]
CA-directory= /etc/isakmpd/ca/
Cert-directory= /etc/isakmpd/certs/
Private-key= /etc/isakmpd/private/qoss01.key

c. /etc/isakmpd/isakmpd.policy
This file defines the KeyNote policy for protection of certain network

communications based on the operational mode and security level of the network. To

support the protection of new protocols by the DSS IPsec implementation, new entries

must be created in this file, specifying the protection policy for every combination of

security policy and operational mode.

KeyNote-Version: 2
Comment: Policy file for Network Modes and Security Levels
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: ((app_domain == "IPsec policy") &&
 (
 ((network_mode == "normal") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 (

82

 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "cast") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "impacted") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||

83

 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||

84

 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "crisis") &&
 (
 ((security_level == "low") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "medium") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "3des") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (

85

 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
 ||
 ((security_level == "high") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "aes") &&
 (esp_auth_alg == "hmac-sha")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")
) &&
 (ah_auth_alg == "hmac-sha")
)
)
)
)
)
 ||
 ((network_mode == "default") &&
 (security_level == "default") &&
 (
 ((esp_present == "yes") &&
 (
 (local_filter_port == "23") ||
(remote_filter_port == "23") ||
 (local_filter_port == "6033") ||
(remote_filter_port == "6033")
) &&
 (esp_enc_alg == "des") &&
 (esp_auth_alg == "hmac-md5")
)
 ||
 ((ah_present == "yes") &&
 (
 (local_filter_port == "79") ||
(remote_filter_port == "79") ||
 (local_filter_port == "80") ||
(remote_filter_port == "80")

86

) &&
 (ah_auth_alg == "hmac-md5")
)
)
)
)
)
 -> "true";

2. Client-Side DSS Gateway

a. /root/initialize_flows
This script creates policy “flows” or rules for use by the ISAKMP

subsystem under OpenBSD. These policy flows establish correct routing paths or tunnels

for IPsec protection of outbound communication, and requirements for specific inbound

communications to arrive with IPsec protection applied.

For additional protocols to be protected under the current DSS IPsec

implementation, additional inbound and outbound flows must be defined in this file for

each well-known port to be protected.

This script is executed by the client-side DSS start up script /root/isakmp.

#!/bin/sh

This script creates the flows that ISAKMPD will use with any security
associations (SA) that it creates. This script *must* be run before
this
host will be able to *initiate* any IPsec-protected communications.

#jfh: The only flows necessary are "net-to-net" (or gateway-to-gateway)
flows. This is because we route *all* outbound packets to
192.168.0.0/24 (the MLS server addresses) through the loopback
before
putting them onto the wire with the command:

THIS NEEDS FIXING...
The TPE services on the MLS server's udp 6002 and 6102 might be
better-defined by specifying the TPE source port 6033. This
might
get things screwed up since the client might occasionally use
port
6033 for something like http. If a decision is made on this
issue,
this note can be removed.

87

Path to binary
IPSECADM=/sbin/ipsecadm

Local and remote hosts, nets, netmasks
LOCAL_GATEWAY=192.168.1.100
REMOTE_GATEWAY=192.168.1.1

LOCAL_NET=192.168.2.0
REMOTE_NET=192.168.0.0

NETMASK_24=255.255.255.0
NETMASK_32=255.255.255.255

remove (flush) any current flows

$IPSECADM flush

Set-up flows for the two specific hosts
Use for defining applications FINGER and TELNET
ESP for TELNET (tcp 23) and TPE (udp 6002, 6102)
AH for FINGER (tcp 79) and HTTP (tcp 80)
-dport for egress traffic
-sport for ingress traffic

#egress flow for finger
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport tcp -dport 79 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for finger
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport tcp -sport 79 \
 -src $REMOTE_GATEWAY -in -require

#egress flow for telnet
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport tcp -dport 23 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for telnet
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport tcp -sport 23 \
 -src $REMOTE_GATEWAY -in -require

88

#egress flow for http
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport tcp -dport 80 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for http
$IPSECADM flow -dst $REMOTE_GATEWAY -proto ah \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport tcp -sport 80 \
 -src $REMOTE_GATEWAY -in -require

#egress flow for TPE services, CLIENT PORT 6033
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $LOCAL_NET $NETMASK_24 $REMOTE_NET $NETMASK_24 \
 -transport udp -sport 6033 \
 -src $LOCAL_GATEWAY -out -require

#ingress flow for TPE services, CLIENT PORT 6033
$IPSECADM flow -dst $REMOTE_GATEWAY -proto esp \
 -addr $REMOTE_NET $NETMASK_24 $LOCAL_NET $NETMASK_24 \
 -transport udp -dport 6033 \
 -src $REMOTE_GATEWAY -in -require

exit 0

b. /etc/isakmpd/isakmpd.conf
This file contains the configuration of the client-side ISAKMP daemon

used in IPsec. Specifications in this file include what IP address the daemon is to listen

on for requests, what protocol is to be used to protect the key exchange negotiation

process, and a listing of the server side DSS gateway “peer” with which the client-side

daemon must communicate. The only lines likely to require changes for use by a second

client and TPE are under the “General”, “Phase 1”, and “Peer” sections.

isakmpd.conf - configured for the TPE/client-side

CONOPS: The server side of the IPsec-protected tunnel sets policy
while the
client-side (this side) creates "flows" and attempts to
negotiate

89

a suite that is acceptable to the server's policy.

The important thing in this file that (may) change is the list of
suites
to try under "Default-Phase-2-Suites" and the IP-addresses of the
endpoints.

[General]
Listen-on= 192.168.1.100
Shared-SADB= Defined
Retransmits= 5
Exchange-max-time= 120
Default-Phase-2-Suites= QM-ESP-DES-MD5-SUITE,QM-AH-MD5-SUITE,QM-ESP-
3DES-SHA-SUITE,QM-AH-SHA-SUITE,QM-ESP-CAST-SHA-SUITE,QM-ESP-3DES-MD5-
SUITE,QM-ESP-AES-SHA-SUITE

[Phase 1]
192.168.1.1= Peer-192.168.1.1/192.168.1.100

[Peer-192.168.1.1/192.168.1.100]
Phase= 1
Transport= udp
Local-address= 192.168.1.100
Address= 192.168.1.1
Configuration= Default-main-mode
Authentication= mekmitasdigoat

[Default-main-mode]
DOI= IPSEC
EXCHANGE_TYPE= ID_PROT
Transforms= 3DES-SHA

No changes need to be made from here-forward

DES

[QM-ESP-DES-SUITE]
Protocols= QM-ESP-DES

[QM-ESP-DES-PFS-SUITE]
Protocols= QM-ESP-DES-PFS

[QM-ESP-DES-MD5-SUITE]
Protocols= QM-ESP-DES-MD5

[QM-ESP-DES-MD5-PFS-SUITE]
Protocols= QM-ESP-DES-MD5-PFS

[QM-ESP-DES-SHA-SUITE]
Protocols= QM-ESP-DES-SHA

[QM-ESP-DES-SHA-PFS-SUITE]
Protocols= QM-ESP-DES-SHA-PFS

90

3DES

[QM-ESP-3DES-SHA-SUITE]
Protocols= QM-ESP-3DES-SHA

[QM-ESP-3DES-SHA-PFS-SUITE]
Protocols= QM-ESP-3DES-SHA-PFS

CAST (new Evie section)

[QM-ESP-CAST-SHA-SUITE]
Protocols= QM-ESP-CAST-SHA

[QM-ESP-CAST-MD5-SUITE]
Protocols= QM-ESP-CAST-MD5

[QM-ESP-CAST-SHA-PFS-SUITE]
Protocols= QM-ESP-CAST-SHA-PFS

[QM-ESP-CAST-MD5-PFS-SUITE]
Protocols= QM-ESP-CAST-MD5-PFS

AH

[QM-AH-MD5-SUITE]
Protocols= QM-AH-MD5

[QM-AH-MD5-PFS-SUITE]
Protocols= QM-AH-MD5-PFS

[QM-AH-SHA-SUITE]
Protocols= QM-AH-SHA

[QM-AH-SHA-PFS-SUITE]
Protocols= QM-AH-SHA-PFS

AH + ESP

[QM-AH-MD5-ESP-DES-SUITE]
Protocols= QM-AH-MD5,QM-ESP-DES

[QM-AH-MD5-ESP-DES-MD5-SUITE]
Protocols= QM-AH-MD5,QM-ESP-DES-MD5

[QM-ESP-DES-MD5-AH-MD5-SUITE]
Protocols= QM-ESP-DES-MD5,QM-AH-MD5

Quick mode protocols

DES

[QM-ESP-DES]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-XF

[QM-ESP-DES-MD5]
PROTOCOL_ID= IPSEC_ESP

91

Transforms= QM-ESP-DES-MD5-XF

[QM-ESP-DES-MD5-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-MD5-PFS-XF

[QM-ESP-DES-SHA]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-DES-SHA-XF

3DES

[QM-ESP-3DES-SHA]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-SHA-XF

[QM-ESP-3DES-SHA-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-SHA-PFS-XF

[QM-ESP-3DES-SHA-TRP]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-3DES-SHA-TRP-XF

CAST (new Evie section)

[QM-ESP-CAST-SHA]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-CAST-SHA-XF

[QM-ESP-CAST-MD5]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-CAST-MD5-XF

[QM-ESP-CAST-SHA-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-CAST-SHA-PFS-XF

[QM-ESP-CAST-MD5-PFS]
PROTOCOL_ID= IPSEC_ESP
Transforms= QM-ESP-CAST-MD5-PFS-XF

AH MD5

[QM-AH-MD5]
PROTOCOL_ID= IPSEC_AH
Transforms= QM-AH-MD5-XF

[QM-AH-MD5-PFS]
PROTOCOL_ID= IPSEC_AH
Transforms= QM-AH-MD5-PFS-XF

AH SHA

[QM-AH-SHA]
PROTOCOL_ID= IPSEC_AH
Transforms= QM-AH-SHA-XF

92

[QM-AH-SHA-PFS]
PROTOCOL_ID= IPSEC_AH
Transforms= QM-AH-SHA-PFS-XF

Quick mode transforms

ESP DES+MD5

[QM-ESP-DES-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
Life= LIFE_600_SECS

[QM-ESP-DES-MD5-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= LIFE_600_SECS

[QM-ESP-DES-MD5-PFS-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
GROUP_DESCRIPTION= MODP_1024
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= LIFE_3600_SECS

[QM-ESP-DES-SHA-XF]
TRANSFORM_ID= DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= LIFE_600_SECS

3DES

[QM-ESP-3DES-SHA-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= LIFE_60_SECS

[QM-ESP-3DES-SHA-PFS-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_3600_SECS

[QM-ESP-3DES-SHA-TRP-XF]
TRANSFORM_ID= 3DES
ENCAPSULATION_MODE= TRANSPORT
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= LIFE_60_SECS

#CAST (new Evie section)

[QM-ESP-CAST-SHA-XF]

93

TRANFORM_ID= CAST
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= LIFE_60_SECS

[QM-ESP-CAST-MD5-XF]
TRANFORM_ID= CAST
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= LIFE_60_SECS

[QM-ESP-CAST-SHA-PFS-XF]
TRANFORM_ID= CAST
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
GROUP_DESCRIPTION= MODP_1024
Life= LIFE_60_SECS

[QM-ESP-CAST-MD5-PFS-XF]
TRANFORM_ID= CAST
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
GROUP_DESCRIPTION= MODP_768
Life= LIFE_60_SECS

AH

[QM-AH-MD5-XF]
TRANSFORM_ID= MD5
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= LIFE_60_SECS

[QM-AH-MD5-PFS-XF]
TRANSFORM_ID= MD5
ENCAPSULATION_MODE= TUNNEL
GROUP_DESCRIPTION= MODP_768
AUTHENTICATION_ALGORITHM= HMAC_MD5
Life= LIFE_3600_SECS

[QM-AH-SHA-XF]
TRANSFORM_ID= SHA
ENCAPSULATION_MODE= TUNNEL
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= LIFE_60_SECS

[QM-AH-SHA-PFS-XF]
TRANSFORM_ID= SHA
ENCAPSULATION_MODE= TUNNEL
GROUP_DESCRIPTION= MODP_1024
AUTHENTICATION_ALGORITHM= HMAC_SHA
Life= LIFE_3600_SECS

[LIFE_30_SECS]
LIFE_TYPE= SECONDS
LIFE_DURATION= 30,25:35

94

[LIFE_60_SECS]
LIFE_TYPE= SECONDS
LIFE_DURATION= 60,45:120

[LIFE_180_SECS]
LIFE_TYPE= SECONDS
LIFE_DURATION= 180,120:240

[LIFE_600_SECS]
LIFE_TYPE= SECONDS
LIFE_DURATION= 600,450:720

[LIFE_3600_SECS]
LIFE_TYPE= SECONDS
LIFE_DURATION= 3600,1800:7200

[LIFE_1000_KB]
LIFE_TYPE= KILOBYTES
LIFE_DURATION= 1000,768:1536

[LIFE_32_MB]
LIFE_TYPE= KILOBYTES
LIFE_DURATION= 32768,16384:65536

[LIFE_4.5_GB]
LIFE_TYPE= KILOBYTES
LIFE_DURATION= 4608000,4096000:8192000

c. /etc/isakmpd/isakmpd.policy
This file defines the KeyNote policy for protection of certain network

communications based on the operational mode and security level of the network. Since

the more restrictive policy definition is formulated on the server-side gateway, this policy

file must be written in a manner that only specifies which protocols must receive AH

protection and which must receive “ESP” protection.

KeyNote-Version: 2
Comment: This policy accepts ESP SAs from a remote that uses the right
password
Authorizer: "POLICY"
Licensees: "passphrase:mekmitasdigoat"
Conditions: app_domain == "IPsec policy" &&
 ((esp_present == "yes") &&
 ((
 (local_filter_port == "23") || (remote_filter_port
== "23") ||
 (local_filter_port == "6033") || (remote_filter_port
== "6033")
) &&

95

 ((esp_enc_alg == "des") || (esp_enc_alg == "3des") ||
(esp_enc_alg == "aes") ||
 (esp_enc_alg == "cast") || (esp_enc_alg ==
"blowfish")))
) ||
 ((ah_present == "yes") &&
 ((
 (local_filter_port == "79") || (remote_filter_port ==
"79") ||
 (local_filter_port == "80") || (remote_filter_port ==
"80")
) &&
 ((ah_auth_alg == "hmac-md5") || (ah_auth_alg == "hmac-
sha") ||
 (ah_auth_alg == "hmac-ripemd")))
) -> "true";

3. TPE

a. /root/net_config
This script reconfigures the network interfaces (e.g. “eth0” and “eth1”) on

the handheld TPE prototype to function in the Stage 4 environment. In this

configuration, “eth0” is the MLS server side network interface, and “eth1” is the client-

side network interface. After configuring the networking for the TPE, this script calls the

“masq” script to configure the NAT functionality of the TPE.

#!/bin/sh

source the environment
. /etc/profile

case $1 in
'start')
 echo "Stopping eth0"
 ifconfig eth0 down

 echo "Stopping eth1"
 ifconfig eth1 down

 echo "Starting eth0, setting to 192.168.2.11/24"
 ifconfig eth0 192.168.2.11 netmask 255.255.255.0 up

 echo "Starting eth1, setting to 192.168.3.1/24"
 ifconfig eth1 192.168.3.1 netmask 255.255.255.0 up

 #echo "Removing default route:192.168.2.1"
 #route delete default gw 192.168.1.1

 echo "Setting default route to client-side security
GW:192.168.2.1"

96

 route add default gw 192.168.2.1

 echo "About to create NAT rules"
 /root/masq start

 echo "NAT tables:"
 iptables -nL
 iptables -t nat -nL
 ;;
'stop')
 ;;
*)
 echo "usage: $0 { start | stop }"
 ;;
esac

b. /root/masq
This script reconfigures NAT operation on the handheld TPE prototype to

function in the Stage 4 environment. “OIP” should be set to the IP address of the

interface on the MLS server side network interface on TPE, and “IIP” should be set to the

IP address of the client-side network interface.

#!/bin/sh

source the environment
. /etc/profile

OIP == outside IP address
OIP=192.168.2.11

IIP == outside IP address
IIP=192.168.3.1

case $1 in
'start')
 echo "Configuring IP Masquerading..."

 # enable IP routing/forwarding
 echo 1 > /proc/sys/net/ipv4/ip_forward

 # flush existing rules
 iptables -F; iptables -t nat -F; iptables -t mangle -F

 # configure NAT
 iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to $OIP
 iptables -t nat -A PREROUTING -i eth0 -p udp --dport 6033 -j
ACCEPT
 iptables -t nat -A PREROUTING -i eth0 -p icmp --icmp-type ! 1 -j
ACCEPT
 iptables -t nat -A PREROUTING -i eth0 -j DNAT --to $IIP

97

 ;;
'stop')
 ;;
*)
 echo "usage: $0 { start | stop }"
 ;;
esac

98

THIS PAGE INTENTIONALLY LEFT BLANK

99

APPENDIX D: TEST PROCEDURES

This appendix contains procedures for installation, configuration and testing of

the Stages 3 and 4 implementations. Descriptions of the test plan coverage and the test

plan report are included in Chapter IV, sections A and B, respectively.

A. TEST FLOWCHART

Figure 11. Test Procedure Flowchart, Part 1

100

Figure 12. Test Procedure Flowchart, Part 2

B. TEST PROCEDURE

A. DSS Test Setup

A.1. Setup the MYSEA server

A.1.1. Boot the MYSEA server

A.1.2. Log into the server

A.1.3. Switch to SL max:max

101

A.1.4. Issue the command “startup” to start the TPS daemon

A.2. Setup the OpenBSD Server-Side Gateway System (servergw)

A.2.1. Boot the system and login as root

A.2.2. Open an xterm window

A.2.3. Start the demonstration GUI by executing ./isakmp

A.2.4. Start the ISAKMP daemon by clicking “Start isakmpd”

A.2.5. Click on “Load Default DP” to load the default policy

A.2.6. Throughout the demo, isakmpd will generate syslog messages referencing
“duplicate tags” and “negotiated SA failed policy check”. These are
remnant debugging statements inserted into isakmpd by the MYSEA
development team and are not errors.

A.3. Setup the OpenBSD TPE-Side Gateway System (tpegw1)

A.3.1. Boot the system and login as root

A.3.2. Open an xterm window

A.3.3. Start the demonstration GUI by executing ./isakmp

A.4. Setup the TPE

A.4.1. If testing a stage 3 install:

A.4.1.1. Start the Java TPE by executing ./tpe in an xterm on the TPE-side

gateway.

A.4.1.2. Click the portion of the TPE containing the IP address

A.4.1.3. If necessary, change the IP address to 192.168.0.130 and press

ENTER

A.4.2. If testing a stage 4 install:

A.4.2.1. Cable the iPAQ TPE per the demonstration instructions and
diagram in Appendix B. You must use the top Ethernet card for the
connection to the TPE-Side Gateway and the lower card for the
connection to the client

A.4.2.2. Reboot the iPAQ once the cabling is complete

A.4.2.3. Run the script “/root/net_config start” to initialize
networking

A.4.2.4. Start the TPE GUI

A.4.3. The client machine can be any operating system.

A.4.3.1. If testing a stage 3 install, the client must:

102

A.4.3.1.1. Be configured with IP address 192.168.2.11

A.4.3.1.2. Have its default route set to 192.168.2.1 (TPE)

A.4.3.1.3. Have a web browser installed

A.4.3.2. If testing a stage 4 install, the client must:

A.4.3.2.1. Be configured with IP address 192.168.3.11

A.4.3.2.2. Have its default route set to 192.168.3.1 (TPE)

A.4.3.2.3. Have a web browser installed

B. Test Procedure

B.1. On the Server-Side Gateway (servergw)

B.1.1. Click on “Security Association Database”

B.1.2. Click on “Security Policy Database”

B.1.3. If testing a stage 3 install:

B.1.3.1. The security associations should be empty and the policy database
should only contain flows from the MLS server to the TPE.

B.1.3.2. No associations exist, and the server gateway creates additional
policy entries after the TPE side requests services and the server
verifies that the requested services and protocols are allowable by
security policy.

B.1.4. If testing a stage 4 install:

B.1.4.1. Both of these views should be empty.

B.1.4.2. No associations exist, and the server gateway creates policy entries
after the TPE side requests services and the server verifies that the
requested services and protocols are allowable by security policy.

B.1.5. The security policy is viewable by clicking “Display Security Policy”.

B.1.6. Click on “Dynamic Parameterization”

B.1.7. Arrange the windows on the screen; the order of importance is:

Security Associations

Security Policy Database

Dynamic Parameter Selection

B.2. On the TPE-Side Gateway (tpegw1)

B.2.1. Click on “Security Association Database”

B.2.2. Click on “Security Policy Database”

B.2.3. The Security Associations should be empty as none exist yet.

B.2.4. The policy entries should exist for each type of flow we want to allow
under DSS management.

103

B.3. Start a packet capture session for this test.

B.3.1. Start Ethereal on a system that has the ability to promiscuously view
traffic on the MLS LAN.

B.3.2. If Ethereal is installed on one of the DSS gateways:

B.3.2.1. Open a new xterm window

B.3.2.2. Enter the command “ethereal”

B.3.2.3. In the “Capture” menu, select “Start”

B.3.2.4. In the first drop-down box, select the interface that is attached to
the MLS LAN.

B.3.2.5. Leave the filter window empty.

B.3.2.6. Press “OK” to begin the capture session.

B.4. Start a Session with the MYSEA Server

B.4.1. In the TPE GUI:

B.4.1.1. Log In:

B.4.1.1.1. Press the Secure Attention Key (SAK)

B.4.1.1.2. You may need to press the SAK twice to get a response.

B.4.1.1.3. Log in with a username and password pair as prompted

B.4.1.2. Negotiate a session level with the MYSEA server:

B.4.1.2.1. Press the SAK

B.4.1.2.2. Issue the “sl” command

B.4.1.2.3. Select a secrecy level (e.g. sl1)

B.4.1.2.4. Select an integrity level (e.g. il3)

B.4.1.3. Start the application (Apache) listener on the MYSEA server:

B.4.1.3.1. Press the SAK

B.4.1.3.2. Issue the “run” command

B.5. On the client:

B.5.1. Open the web site: http://192.168.0.130/

Every page should return a listing of your current secrecy and integrity levels

B.5.2. Browse the site as normal

B.6. VERIFY:

B.6.1. On the TPE gateway:

B.6.1.1. The Security Association window should show the current security
associations (SA). Specifically, associations should exist that
correspond to the algorithms specified in the Test Plan. If specific

104

System Mode and System Levels were not chosen, the security
association should match the “default” policy.

B.6.1.2. *If the security associations do not exist with the correct
algorithms, note the failure.

B.6.2. On the server gateway:

B.6.2.1. The Security Association window should show the current security
associations (SA). Specifically, associations should exist that
correspond to the algorithms specified in the Test Plan. If specific
System Mode and System Levels were not chosen, the security
association should match the “default” policy.

B.6.2.2. *If the security associations do not exist with the correct
algorithms, note the failure.

B.7. On the TPE, negotiate a new MYSEA session level:

B.7.1. Press the SAK

B.7.2. Issue the “sl” command

B.7.3. Select a secrecy level.

B.7.3.1. If the previous level was “sl1”, select “sl3”.

B.7.3.2. If the previous level was “sl3”, select “sl1”

B.7.4. Select an integrity level (il3)

B.8. Restart the application (Apache) listener on the MYSEA server:

B.8.1. Press the SAK

B.8.2. Issue the “run” command

B.9. On the client:

B.9.1. Open the web site: http://192.168.0.130/

Every page should return a listing of your current secrecy and integrity levels.
Although none are expected, note any problems/inconsistencies with current
secrecy and integrity levels.

B.9.2. Browse the site as normal.

B.10. On the server-side gateway, trigger a change in the security service policy:

B.10.1. In the Dynamic Parameters window, advance the System Level and the
System Mode to the next entry listed in the Test Plan.

B.10.2. Click the Submit button

B.10.2.1. The key management daemon, isakmpd, now destroys any server-
side security associations and dynamic security policy flows.

B.10.2.2. The server-side gateway daemon also notifies the TPE side
gateway daemon to discard its SA’s.

105

B.11. VERIFY:

B.11.1. On the TPE gateway:

B.11.1.1. The security associations window should now be empty.

B.11.1.2. *If any security associations exist, note the failure.

B.11.2. On the server gateway:

B.11.2.1. The security associations window should now be empty.

B.11.2.2. *If any security associations exist, note the failure.

B.11.2.3. If testing a stage 3 install:

B.11.2.3.1. The policy database should only contain flows from the MLS
server to the TPE.

B.11.2.3.2. *If additional security policy flows exist, note the failure.

B.11.2.4. If testing a stage 4 install:

B.11.2.4.1. *If any security policy flows exist, note the failure.

B.12. Repeat steps B.7 through B.11, cycling through all Security Mode/Level
pairings, and noting any failures.

C. Review the packet capture

C.1. Stop the Ethereal packet capture by clicking the stop button.

C.2. VERIFY (Table 4):

C.2.1. Ensure NAT is being performed. (No traffic appears on the MLS LAN
with a source or destination address set to the client’s address.)

C.2.1.1. Stop the Ethereal packet capture by clicking the stop button.

C.2.1.2. In the middle section of the Ethereal GUI, expand the layer 2

information about the captured packets by clicking on the “+” next to

the label “Ethernet II”

C.2.1.3. Scroll through the upper section of the GUI, selecting packets with

either the source IP address or a destination IP address equal to the

client computer’s IP address.

C.2.1.4. For every packet with a source or destination address equal to the

IP address of the client:

C.2.1.4.1. *If the source IP address of a the packet matches the client IP

address verify the hardware source address under the layer 2

106

Ethernet II heading matches the hardware MAC address of the

client. If these addresses do not match, note the failure.

C.2.1.4.2. *If the destination IP address of a the packet matches the client

IP address verify the hardware destination address under the layer

2 Ethernet II heading matches the hardware MAC address of the

client. If these addresses do not match, note the failure.

107

LIST OF REFERENCES

[BEL76] Bell, D. E. & La Padula, L. J. (1976). Secure Computer System: Unified

Exposition and Multics Interpretation. ESD-TR-75-306. Mitre

Corporation, Bedford, MA.

[BIB77] Biba, K .J. (1977). Integrity Considerations for Secure Computer Systems.

ESD-TR-76-372. Mitre Corporation, Bedford, MA.

[BLA99] Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A. (1999, September).

Request for Comments: 2704 – The KeyNote Trust-Management System

Version 2

[BLA01] Blaze, M., Ioannidis, J., Keromytis, A. (2001, February). “Trust

Management for IPsec.” Proceedings of the Internet Society Symposium

on Network and Distributed Systems Security (SNDSS) 139 - 151.

[CC04] Common Criteria for Information Technology Security Evaluation, Part 1:

Introduction and General Model, Version 2.2, Revision 256 – CCIMB-

2004-01-001 (2004, January) Available:

http://www.commoncriteriaportal.org/public/files/ccpart1v2.2.pdf.

Accessed: 03/25/2005.

[CYG04] CygnaCom Solutions (2004). Available:

http://www.cygnacom.com/labs/pfSEL0181xts400.htm. Accessed:

02/12/2005.

[HAR98] Harkins, D., Carrel, D. (1998, November). Request for Comments: 2409 –

The Internet Key Exchange (IKE). Available: ftp://ftp.rfc-editor.org/in-

notes/rfc2409.txt. Accessed:03/26/2005.

[IRV00] Irvine, C. E., Levin, T. E. (2000, September). Quality of Security Service.

Proceedings of the New Security Paradigms Workshop, Ballycotton,

Ireland, 18-22

108

[IRV04] Irvine, C. E., Levin, T. E., Nguyen, T. D., Shifflett, D., Khosalim, J.,

Clark, P. C., Wong, A., Afinidad, F., Bibighaus, D., & Sears, J.(2004).

“Overview of a High Assurance Architecture for Distributed Multilevel

Security.” Proceedings of the 5th IEEE Systems, Man and Cybernetics

Information Assurance Workshop,38-45.

[KEN98] Kent, S., Atkinson, R. (1998, November). Request for Comments: 2401 –

Security Architecture for the Internet Protocol. Available: ftp://ftp.rfc-

editor.org/in-notes/rfc2401.txt. Accessed 03/26/2005.

[LEO00] de Leon, R. (2000, August). DOD CIO G&PM "GIG Network

Operations". Available: http://www.defenselink.mil/nii/org/cio/doc/gig10-

8460-082400.pdf. Accessed 03/27/2005

[MAU98] Maughan, D., Schertler, M., Schneider, M., Turner, J. (1998, November).

Request for Comments: 2408 – Internet Security Association and Key

Management Protocol (ISAKMP). Available: ftp://ftp.rfc-editor.org/in-

notes/rfc2408.txt. Accessed:03/31/2005.

[NIA04] National Information Assurance Partnership (NIAP) (2004, December).

Available: http://niap.nist.gov/cc-scheme/st/ST_VID3012.html. Accessed:

02/12/2005.

[OPE04] OpenBSD (2005, March). “13 – Using IPsec (IP Security Protocol)”, The

OpenBSD FAQ. Available: http://www.openbsd.org/faq/faq13.html.

Accessed: 02/10/2005.

[OPE05] OpenBSD (2005, March). Available: http://www.openbsd.org. Accessed:

03/31/2005

[ORM96] Orman, H., (1998, November). Request for Comments: 2412 – The

Oakley Key Determination Protocol. Available: ftp://ftp.rfc-editor.org/in-

notes/rfc2412.txt. Accessed: 03/31/2005.

[SEA04] Sears, J. D. (2004, September). Simultaneous Connection Management

and Protection in a Distributed Multilevel Security Environment. Master’s

Thesis, Naval Postgraduate School, Monterey, CA.

109

[SYP02a] Sypropoulou, E., Agar, C., Levin, T., & Irvine, C. (2002, March) “IPsec

Modulation for Quality of Security Service.” Proceedings of the

International System Security Engineering Association Conference,

Orlando Florida

[SYP02b] Sypropoulou, E., Levin, T., & Irvine, C. (2002, September)

“Demonstration of Quality of Security Service Awareness for IPsec”

Center for INFOSEC Studies and Research whitepaper # NPS-CS-02-005

Available:

http://cisr.nps.navy.mil/downloads/QoSS_Ipsec_Demo_WP.pdf.

Accessed: 03/31/2005

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Hugo A. Badillo
NSA
Fort Meade, MD

4. George Bieber
OSD
Washington, DC

5. Deborah Cooper
DC Associates, LLC
Roslyn, VA

6. CDR Daniel L. Currie
PMW 161
San Diego, CA

7. CDR James Downey
NAVSEA
Washington, DC

8. Dr. Diana Gant
National Science Foundation
Arlington, VA

9. Lewis Gutman
SPAWAR Systems Center
San Diego, CA

10. Richard Hale
DISA
Falls Church, VA

11. LCDR Scott D. Heller
SPAWAR
San Diego, CA

112

12. John Horn
Naval Postgraduate School
Monterey, CA

13. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

14. Russell Jones
N641
Arlington, VA

15. Wiley Jones
OSD
Washington, DC

16. David Ladd
Microsoft Corporation
Redmond, WA

17. Steve LaFountain
NSA
Fort Meade, MD

18. Dr. Carl Landwehr
National Science Foundation
Arlington, VA

19. Dr. Greg Larson
IDA
Alexandria, VA

20. Penny Lehtola
NSA
Fort Meade, MD

21. Ernest Lucier
Federal Aviation Administration
Washington, DC

22. Dr. Vic Maconachy
NSA
Fort Meade, MD

113

23. Doug Maughan
Department of Homeland Security
Washington, DC

24. John Mildner
SPAWAR
Charleston, SC

25. Dr. John Monastra
Aerospace Corporation
Chantilly, VA

26. Thuy Nguyen
Naval Postgraduate School
Monterey, CA

27. Steve Rose
BAE Systems
Herndon, VA

28. Keith Schwalm
Good Harbor Consulting, LLC
Washington, DC

29. RADM Andrew Singer
NETWARCOM
Fort Meade, MD

30. Dr. Ralph Wachter
ONR
Arlington, VA

31. David Wirth
N641
Arlington, VA

32. Daniel Wolf
NSA
Fort Meade, MD

33. William Wolfe
SPAWAR Systems Center
San Diego, CA

114

34. James Yerovi
National Reconnaissance Organization
Chantilly, VA

35. CAPT Robert Zellmann
CNO Staff N614
Arlington, VA

